AD-A100 881 AIR FORCE INST OF TECH IR!GHT-PATTERSONUAFB OH SCHOO~-ETC F/6 9/2
JOVIAL {J73) TO ADA TRANSLATOR SYSTEM.(
DEC 80 R L BROZOVIC

UNCLASSIFIED AFIT/6CS/EE/80D-S5 °

DTIC FILE COPY

I , v COTE
e R e oppoed |
Dpye pulie relaase and sale;- i - Lo e .
" aggiribution is unlimited. .o -

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY (ATC)

AIR FORCE INSTITUTE OF TECHNOLOGY
o]

Wright-Patterson Air Force Base, Ohio

81 6 30 071

; S, s :'de 3 e

JOVIAL(J73) TO ADA

TRANSLATOR SYSTEM

THESIS

AFIT/GCS/EE/80D-5

Richard L. Brozovic
Capt USAF

f s puhiw reloome and sale; te
Jishitetion is unlimited.

Piftle ommomomt g heen approved

kad

|

———

4

1‘(
‘{1:;IT/GCS/EF/8OD-5

e ——— e e

{ :/ /

\\,//fJOVIAL(J73) TO ADA
/
/ TRANSLATOR SYSTEM

/
1

THESIS

Air Training Command

in Partial Fulfillment of the

Requirements for tne Degree of

Master of Science

ALY

by :
! Richard L.}Brozovici B.S.
Capt 7 USAF
Graduate Computer Systems

;- December 1980

2

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

[

fr

Approved for public release; distribution unlimited.

-

/

. '
R P

Preface

I have Dbeen interested in programming languages since
my first courses in computer science at the undergraduate

level. With the introduction of Ada, 1 immediately becamc

interested in the future of Ada and the development of
software tools to support the Ada enviromment. The desi n
and development of a system to translate Jovial(J73) into
Ada provided me with an excellent opporEG;I?;—ES excercise
some of the compiler techniques that 1 have studied and also
explore some of the concepts of language translation. L
also had the opportunity to learn another langua_ e, J73, and
become involved with the identification oif deficiencies in
the still developing compiler. All considercd, 1 enjoyvued

the project immensely.

During the design and development of this translatiun
system, 1 received help from many sources. The Avionices
Laboratory of the Air Force Wright Aeronautical Laboratories
(AFWAL/AA) sponsored this project and several people deserve
my thanks. Major Dan Burton was the project sponsor and
provided considerable guidance and information regarding
J73. Mr Mike Burlakoff was also of great help 1n learning
J73. Many other people within the Avionics Laboratory also
provided help from time to time. The sponsorship and

support of the AFWAL/AA were greatly appreciated,.

I would also like to thank my thesis advisor, Lt Col

Jim Rutledge, who provided technical support on Ada. Iajor

Mike Wirth also deserves my thanks for his assistance in the
areas of formal 1language theory. Thanks also goes out to
many other AFIT instructors and fellow students who provided
insight and guidance during the design and development of

the project.

Finally, there are two other persons that deserve u
special thanks for their part in my success. Iy wife Puat
shared the good times with me and was there to support e
through the hard times. Her encouragement was 1nvaluable
during my entire time at AFIT. The other person of great
importance to me is my son, Jason. Altnoc h he did nou
understand why I could not alwayvs give him the attention hv
wanted, when we did spend time together, we enjoyed lifc

greatly.

iii

Contents
Preface .« o« ¢ ¢« o o o o o s s o o &
List of Figures . . . « ¢« . . « . .
List of Tables « . « « . .

ADSETACE ¢ ¢ o o o o o o o o o o o o

I.
II.

III.

Iv.

V.

Introduction « « « o o o « o
Requirements Definition . . .
System Analysis

LR Parser Generator
Cecisions .+ o v o o o o o o &

System Software Development .

Parser Module . + « « « « + &
Parser Table Generation .
Parser Table Trausiation
Parser Implementation . .
Semantic Processing . . .

Translation iModule . « . . .« .

Prettyprint iModule

Conclusion « ¢« v ¢ « « « & o«

Results and Recommendations .

Bibliography « « « ¢« ¢« ¢ ¢« ¢ o o .+ &

Appendices

A

B
c
D
E

LR: Autcmatic Parser Generator
J73 Language Productions . . .,
System Maintenance Guide . . .
JATS User Guide . « « « « «

Example Programs

iv

and

LR(1)

« e
Parser
e o e
L] . .

b

vii

o

Figure

O W 00 ~N O un B~ W N

B S e e
W -

List of Figures

Assignment Statement .,

Partial Parse Tree « ¢« « ¢ o « .

{assignment-

stmt> Node

Assignment Statement Production

Declaration
Translation
Translation

Translation

of Item Type
of <{assignment-stmtd>
of <label>

of <{program-body> .

Vocabulary Data Structure . . .

Tron-ition Data Structure . . .

Reduction Data Structure

System Structure Chart

System Structure Chart

System Structure Chart

-
—

—
O o g

N
O

25
29
30
32

. 47
. 48

49
75

. 76

77

o

PR

List of Tables

Table Pa e
I Grammar Discrepancies . . « ¢« & « &+ « & & o o+ « 15 :
11 Type Classes « o« o« o+ v 4 o o & o o v o o & & & 24
I1I1 Changes to Dimensioned Variables of LRS 51
v System EYTOTS « v ¢ o o o« o o o o o 4 s o o o o B84
vi

AFIT/GCS/EE/80D-5

Abstract

in recent years the Air Force has developed a standard
programming languaze, J73, for wuse in embedded computer
systems. Now that the Air Force has a considerable
investment in systems that are currently being developed
with J73, the Department of Defense has selected a high
order programming language, Ada, that will become the
standard for programming embedded computer systems
throughout the Department of Defense. Also under
development is the definition of a support environment for
Ada. One of the tools of this support environment should be
a translator that will produce Ada source programs from J73

source programs {(Ref 4).

The subject of this research project was the design and
development of a Jovial(J73) to Ada Translator Systen
(JATS). The resulting system accepts J73 programs and
produces equivalent Ada programs to tue extent possible
while identifying segments of J73 code that were not
translated. This project made wuse of language parsing
techniques and various data structures to support the
translation process. Several problem areas arc identified
with possible solutions. The translator system should be a

useful tool in the transition from J73 to Ada.

vii

~ag

I Introduction

In recent years the Air Force and Department of Defensc
(DoD) have initiated efforts to adopt standard programming
languages in order to reduce the cost of software
development for embedded computer systems, Enbedded
computer systems are an integral part of a larger weupo:
system, such as a flight control computer in an aircraft.
Some of these embedded systems are so unique and specialize.l
that none of the programming languages approved for wuse 1in
Air Force systems have been appropriate for programning
these systems. As a result, new programuing lansuages Thave
been 1introduced which compounds the problemns 0 suftwarc
development. 1In an effort to reduce software devcloprmeit
costs the Air Force has developed J73 which is a dervivarive
of Jovial, Jules' Own Version of the International Algebralc
Language (Ref 1:39)., As a result, the Air Force has 1
considerable investment in systems that are currently unler

development with J73.

In a somewhat later effort, the DoD also initiated the
development of a DoD standard high order language for
programming embedded computer systems., In April 1979, DoD
selected Ada as the language and in July 1980 released a
proposed standard for the language. In the near future, Ada
is supposed to replace J73 on the list of approve.!
programming languages for embedded computer systens

(Ref 13). Also currently under design is the definition of

a support environment for Ada which should include, ancc

other software tools, translators for present languages

(Ref 4).

Although direct translation of existing software s
not produce production quality software, a translator whic:
performs the bulk of the translation can still be a valuabl.
aid in the transition to a new programming language. 1t can
save valuable time by reducing the amnount oi hand
translation that is required and identifving those are.s
that do reguire manual translation. The Avioanics Laboratory
of the Air Force Wright Aeronautical Laboratories (AFWSAL/AMN
has a regquirement for a J73 to Ada translation svsten which
should directly translate, to the extent possidble, J73
programs into an ejguivalent Ada program and identify thosc

segments of code that were not fully translated,

The puarpose of this research project was to design aald
develop a translator system that would produce eqaivalen:
Ada programs from J73 programs. The system, called JaTs tov
Jovial(J73) to Ada Translation Systen, is a software product

which was implemented on the AFWJAL/AA DecSysten-10 and

produces Ada text files.

The maiority of the work in producing JATS was in the
software design and development. There are tinree functional
units of JATS: (1) parser module, (2) translation module,
and (3) prettyprint module. The parser module processes the

input language and constructs a parse tree, an interna!

inshetiiihasn i

representation, of the progran. The translation modu.c

! .
L ‘ manipulates the parse tree to construct an eguivalent Ads
program. The prettyprint module uses the results of ih-

translation to produce a formatted text file.

The parser was developed frowm a software packe,c¢ fro
Lawrence Livermore National Laboratory (LLANL) (Re? 1200,
This package allows the wuser to develop o table-drive:
parser from a specification or the language sonatax wiso
which the user can develop a langusge processor. For o ihils
project, the parser 1is wused TO CONSLIUCT & piTse Lloe,

tree structure representing the input prograe .

The translation routines process SO parsc Lol alnd

roduce a modified tree that represents an couivalonr Ao
P b 4

program. Finally, the prettyprint routine prodoces o

formatted text file using the suggested tovnattin

conventions in the Ada reference manaal ds much as possibic.

The remainder of this documen: descoribes

[
o
-
-
o
=
b
-
C.
.
s,

parts of the design and development o Jals. Cho,toer 10
defines the requirements specified by the rTescurcn projoo:
sponsor, AFWAL/AA. Chapter III presents the svsten.:
analysis that was performed prior to development, Chapter
IV describes the software development. Cnapter VU prescnis

the results of this project and recommendations for further

work. Several appendices provide additional information for

the interested reader. Appendix A briefly describes the

LLNL software package. Appendix B defines the syntax of tiwe

o73 language and identifies those language productioﬁs that
have been translated. Appendix C contains a description of
JATS and was designed to be a system maintenance aid.
Appendix D is a user's guide and Appendix E 1is an example

J73 program and its translated Ada version.

In the remaining discussions, for the purpose of
clarity, reserved words and specific data names will be
capitalized and will be discernable from context.
Nonspecific elements of the J73 language will be enclosed in
angle brackets. For example, <name> represents any valid
J73 1identifier. The elements of J73 correspond, as closely

as possible, to the definition of tue language in

MIL-STD-15894A.

Il Reguirements Definition

In recent years, the high costs of software developmuent
have increased the importance of the wuse of software
development tools. Currently, the USAF has a consideravl
investment in major software systems that are bein_
developed with J73. With the introduction of Ada, which 1is
supposed to replace J73 as the USAF's approved pro ramming
language for embedded computer systems, it hnas Dpeconc
evident that an automated translation svstem from !

is needed.

The Air Force Wright Aeronautical Laboratoeries,svionios
Laboratory has stated a requirement for the developmoent ol
such a system. Although the gencral requirencon: o
translation is rather straightforward, it is no simplc tusda,
As pointed out in the development of the Autopsy project ut
the University of Southern California, 'there are o
constraints pguiding the development of a usciul translation
system:

1. A translation system must do almost all of tiavc
work.

2. No translation system can do all of the worx"
(Ref 2:118).

be

Invariably there will be sections of code which cannot
directly translated because of unique system dependencies.
In such cases it is very difficult to insure the correctness

of the translation and the user must perform the translation

manually.

The general requirement can be divided 1into threo
specific parts. First, the translation system should acud,:
any correct J73 program and produce, to the extent possibl.,
an equivalent Ada program. The assumptiun that the inputi i-
syntactically correct will allow for the elimination of
lengthy error detection and recovery routines. Sccondly,
when a direct translation is not possible, the translactor

should identify the untranslated code to allow the user to

perform a manual translation. Thirdly, to iasur
portability of the translation system, Its design saoald
conform to MIL-STD-158Y4.., which defines the syala oo

semantics of J73.

Since J73 is still undergoing changes, the syste
should be designed to allow modification of the syste o
meet the changin; lanjguage environment. Since the scopoe ol
this research project was limited to translating a subsci ot
J73, the systeir should also be designed to facilitate tLic
addition of the remaining translation routines to complete

the translation system.

In summary, JATS should translate J73 source prograns
into Ada source prograns, identifying those segments of code
that have not been translated. JATS should also be designed
to allow maximum portability, meet changing langau,c
requirements, and allow completion of the translation

process.

R

IIT System Analysis

The analysis of any large software project is an
important task that should not be overlooked. One of tiec
goals of any system analysis should be to identify al!
software development tools that may be applicable to tiun
project. With 1increased emphasis on reducing softwarc
development costs, the use of available software that huax
been tested and implemented must be coasidered and can
reduce the overall effort and therefore tne costs of
development project. This is especially important ia a
research project which must be limited in scope in order o

achieve a reasonable goul.

Translation of the entire J73 language was not possitiic
within the time constraints of this project. Thereiore u
subset of the J73 language was selected tfor translation.
This subset was chosen based upon the more commonly uscld
features of the languajge so that the results would be

applicable over as large a range as possible.

Although the project was limited to translating a
subset of J73, the desizn of the system proceeded as if the
entire J73 language was to be translated. This will allow
the addition of the remaining translation routines witna
minimum impact on the rest of the system. Therefore, the
design of the front end of the translator system, the

parser, was a critical part of the project. There arc two

general techniques used in the development of parsers. One

"d_'-..'..-'...-..-.'--"'-lIIllllllllII-----......

© e

is the use of top-down recursive descent parsers and ti.
other employs table-driven bottom-up parsers. The tfirst
technique implements the parsing algorithm as recursive

procedures whose alzorithms depend upon the language to b

processed. As a result, a general parser for more than onc »

language cannot be developed since the parsing algorithnx
will change from one language to another. 1In contrast, tic
second technique uses algorithms that are langua o
independent to generate and then use a set of parser tables.
Since, the tables contain the specific information about Ui
language, the algorithms can be impleucnted to gencrate
parsers for any members of a given family of languages. Tnu
particular family of lan,uapges depends upon the al_oricnos
used to generate the parser, One such parser geinerator
package 1is '"LR: Automatic Parser Generator and LrR(1) Parscr’
designed at Lawrence Livermore ULational Laboratory (LLIL)

(Ref 12).

LK Parser Generator

1

The LR package 1is a set of programs written in Al
standard FORTRAN 66 which have been successfully wused in
many applications. The package is currently available on
the Aeronautical Systems Division's Control Data Corporation
CYBER 175 computer system and has been use. in previous AFIT
research efforts. The AFWAL/AA DecSystem-10 computer syste'™
can also support LR. The first program of the LR package,

LRS, 1is the table generator. It is completec in itself but

-

has two implementation dependent subroutines that require
minor changes to implement it on the DecSysten-10. Thie
second program, PRS, 1is the parser skeleton and must b.
supplied with the necessary support routinc., to complete tic

language processor. These required routines are the lexical

processor, which recognizes the lexical elements of toco

language, and the semantic processor, uhich Jdefines the

semantics of the language processing.

Since both parsing techniques require tne lexicil and
semantic processors, the two technigues do not ditfter in
that aspect. However, since a parser zenerator paltrd.c
available, the table~driven bottom-up parser was choscen {ov

this research project.

Decisions

Since LR was available for use in tne development o
translator system, the major decision tiiat hat to be 7
before development could proceed was the choice i o
programming language. Since LK was written in AlsSD standerd
FORTRAN 66, the continued use of FORTRAlI was possible, but
undesireable. The main reason for this was the anticipated
use of various data structures and recursive al_orithrs
which cannot be implemented in FORTRANL. Also, one of the
goals of the Ada support environrent 1is to develop thu
software tools using Ada. Therefore, Ada would have been

the obvious choice. However, the lack of a compiler would

—

trapr

have serioucly restricted the development and testing oI tinc
system. The next choice was J73, which was an excellent
choice for several reasons. J73 1s a block structured
programming language which allows the wuse of structured
programming techniques and any system that supports J73A;

should also be able to support the translator systei.

Another possible reason might be the rfact that the
translator could then translate itself into an Ada version.
However, this approach would not be equivalent to developing

the translator in Ada.

There was only one drawback to designing the translator

system in another language; the parser skeleton, PRS, wus

! written in FORTKRAN. However, this was a minor drawbacu:
since the parser skeleton was also available in a PASCAL
version as a result of an AFLT class project for the
Advanced Compiler Theory course. Since the algorithms uscd
in the parser skeleton are short and straightforward, and
were already implemented in a block structured programming
language, the process of translating the parser skeleton

into J73 did not involve much effort.

10

:
¥
'
:
i
¢
§
£

IV System Software Development

The bulk of this research project was the development

of the Jovial(J73) to Ada Translation System (JATS)

software. JATS consists of three functional modules:
(1) parser module, (2) translation module, and (3
prettyprint module. The parser module was developed using

the LLNL parser generator package and produces a parse trec
of the source program, The translation module uses the
parse tree and performs a direct translation of the nodes of
the tree. The result of the translation is a modified parse
tree which represents an equivalent Ada progranm, The
prettyprint wmodule uses the modified parse tree to build a
formatted text file whicnh contains the Ada progran. Each

module of the system will be described in detail,

Parser Hodule

The parser module implenents a table-driven bottum-up
parser designed using the LR parser generstor. LR is a4
language processing tool consisting of two programs. The
first program, LRS, is an automatic parser table _enerator,
The second program, PRS, 1is a parser sxeleton., When the
tables from LRS, the lexical processor, and the semantic
processor are added to PRS tne result is an LR(1) parser and
language processor. The LR(1) characteristic of the
language is a design constraint of the prammar which defines

the syntactic type of the languapge and means that the

LR

language can be parsed from left-to-right with a lcoxahedd
requirement of one symbol. A language of this type cin be
recognized by a deterministic pushdown automaton in linear
time (Ref 7:501). A deterministic pushdown automaton uses a
stack and the knowledge of the current state and lookaheal
symbol to decide the next course of action. The parscr
tables from LRS provide the control information <for tic
finite state automaton while PRS provides the definition of
the process. The design of the parser module involved four
major phases: (1) parser table generation, (2) parser table
translation, (3) parser implementation, and (4) semantic
processing. bEkach of these sections will be discussed in

further detail.

Parser Table Generation. LK5 accepts an LR(1) gramnur

in a modified Backus~Naur Form and produces a gramnmaer
analysis and a set of parser tables. However, some WOrK wuas
necessary to implement LKS on the DecSysten-10. Lin?
contains two subroutines that are implementation dependent,
INIT and CHRIND. INIT initializes the input and output
files. CHRIWD converts a single character store.
left~justified in one word into an integer, the character
code, and required the use of a macro subroutine. This
macro routine is a function called ICHR. With these two
changes, LRS was successfully running on the DecSystem-10.
Also, Dbetore LRS would process the complete J73 gramnur,
several other changes had to be made within it. Considering

the size of LRS, this was no minor task, These changes

‘“m

involved increasing the sizes of some of the dimensioned
variables to accommodate the large grammar. These changes

are discussed in greater detail in Appendix A.

One other change was made to enhance the use of LKS.
In the version available at AFIT, both the grammar analysis

and the parser tables were output to the same file and the

parser tables had to be copied to another file with the wuse
of an editor program. The grammar analysis consists of
large amounts of data describing the parser and 1is usually
output to the printer while the data tables are placed into 7
a data file to be inserted into the parser skeleton. To i
separate these output files, one additional output
subroutine was added to write the data tables to a differcat

file. A description of this subroutine 1is contained in

Appendix A.

The J73 grammar is dinput to LRSS in a modified

Backus-Naur Form, which is a convenient wa, of describin_
the syntax of programming languages. Several problems were
encountered during this pnase of the project since a
complete LR(1) grammar was not available. After

considerable effort to rewrite the grammar from

MIL-STD-1589A into a form that was LR(1), an LR(1) grammar

P

for the executable statements of J73 was obtained from
Softech Incorporated (Ref 8). However, the remaining grammar
for the declarations was not LR(1). According to Softech

Inc., they developed the J73 <compiler wusing a top-down

13

recursive descent parser for the declarations andé o
table-driven bottom-up parser for the statements and
therefore did not have a complete LR(1) grammar availablc.
However, according to the language designers at Sofrtec:
Inc., J73 1is a deterministic context free language, whioh
implies (Ref 7:512) that an LR(1) grammar does exist for tuvu
language. Rewriting the grammar was no minor tasxk and therc
are still several places in the grammar where the translator
will not accept a syntactically correct J73 progran. Tiie
resulting grammar is contained in Appendix B. The jroeatuest
discrepancy is probably the complete lack of
<block-preset> definition. The definitions of the
{block-preset> and the <table-preset> conflicted, resultin:
in a grammar that was not LrR(1). The pranmar for i
<block-preset> could have been rewritten but would have beuen

a time consuming process. The <block-presect> was eliminatcod

in favor of allowing development to proceed on the remainin .
modules of the system. However, use of the <block=-presci®
does not appear to be that extensive and this loss ol
completeness was assumed to be justified. Other
discrepancies are concerned with some of the si~c
constraints in some of the data declarations. The problen

was that the <formula> in some of these cascs was

immediately followed by a left parenthesis while the grammar
for a subscripted variable can be a <name> followed by
left parenthesis. For a grammar to be LR(1), the parser ha=x

to be able to decide what to do in its present state bascl

14

upon the next token, or symbol, of tne 1nput streo

However, with this conflict, the parser could not decidc
whether to combine the <name> and left parenthesis to
generate the subscripted variable or reduce the <name> toc
{formula> to generate, for example, a <status-size>., Tht
specific areas that are constrained are the <{status-size> in
the declaration of a status item, the <btits-per-entry> and
{entry-size> 1in the declaration of structured tables, and
the {repetition-count> in a <{table-preset>. Again, thesc
constraints do not appedr to place a serious limitation upon

J73 users. These discrepancies are sumuariced in table 1.

Table 1

Grammar Discrepancives

MIL-STD-15894A current
Reference Element Definitien
2.,1.1.6 {status-size> <integer-literal>
2.1.2.2 {bits-per-entry> Cinteger-literal>
{named

{function-cail>
2.1.2.4 {entry-size> {integer-litera:s

{name>

{function-cuil>

2.1.6 {repetition-count> {integer-literal>

2.1.6 <{block-preset> ot Defined

It should also be noted that a <name> which has not yet

been defined during parsing of declarations is scanned as a

15

<{name> while an undefined <name> during pavrsing :
statements 1is scanned as a <proc-label-nane>. This
distinction was necessary in the grammar definition to n.u

it LR(1).

Once an LR(1) grammar for J73 was deiined, LKRS prodecu!
a valid set of parser tables. The J73 grammar that was usc.
to generate thesec parser tables is contained in Appendix L.
The specific contents and structure o1 the tables are

described in Appendix A.

Parser Table Translation., Once the parscy Lalles Wi

obtained from LRSS, a translation sty was regquired o
transform the data tables into the J73 languece in o o,
that was equivalent to the FORIRAL 66 DIMeN IOl aad Looin
statements. The data tables were processced by Tooliy.. 3
and produced J73 constant tublie deciaratiocns thal duplica:.
the FORTRAN 60 data structures. These statenents were o
collected together as a compool module. J73 conpocl modaic
are separately compilable modules Ll contala N
declarations. Tie usv 0of tie compovs Moddie proved Lo Lo
very advantageous since the tables were vers lav_ o and
required about five minutes of cpu time for compilation on
the DecSystem-10. The J73 compool module provided the

arser table intormation for the parser skelieton,
D

Parser Implementation. PKs provided a FORTRAN parscr

skeleton which had to be translated into J73. This step wus

relatively simple since PKY nad already been translated iuto

10

v -

PASCAL and the same data structures were available in 77,
Four subroutines make up the main parsing algoricn

(1) FIND'REDUCTion, (2) FIND'TkANsition, (3) DO'REDUCIivw,
and (4) DO'TkRANsition. FIND'REDUCT uses the current sta.
and token to search the tables for a possible reduction, It
one 1is found, the applicable language production is usel b
DO'REDUCT to call the semantic processor and reduce o
information 1in the stacks accordinglv., I1f a reduction i3

not possible from the current state, FIND'Tkall seirches the

=3

tables for a possible transition to another sLate,
transitcion 1is possible, DO' TRAN STalKs the Cavis ..
information on the appropriate stacxs and calls the lexic
processor for the next towen in the 1input stvei .,

neither 4 reduction nor transizion 1s possivle, the pav-os

has detected an error and masy recover. Since whl

[

translator was designed with the assumption a4l the 19
programs are correct, any errors Jetected will resul:s
Pl

grammar discrepancies and £has pavi of fhe progret <HN T

processed.

The major addition to the sxeleton to coiplute L
parser was the lexical processor or scanner, Tris
subroutine performs a lexical analysis of the inpat a2
supplies the parser with the tokens of the 1nput stres .
For example, the assignment statement in figure 1 consists
of three lexical elements: (1) TEST'FLAG which 1is a J7g

identifier or <name>, (2) tne -equal sizgn, and (3) tne

reserved word FALSE. The lexical structure differs from oo

17

TEST'FLAG = FALSE

Fi,

o 1. Assignment Statement

language to another implying the necd for o« specialicd)

P

scanner. The lexical elements of Rt cONsis
(1) reserved words and symbols, (2) identifiers or <{namc’ s,
(3) numbers, (4) character strings or <Kcharacter=-litceralis",
(5) directives, and (6) comments. Procedures il are Lo
to the lexical processor arce uased to scan the difterc

elements of the languagc. These procedures s well

o
~
I3

several functions whicn support the lemical procosso

described in Appendix C.

Semantic Processin,. Tne senantic processcer Juscoribe

the actual language processing. witnouat the senmant il

processor, the parser is complete in thut it wil

L orecognioc
the grammar. However, for a languagje processor to periorn o

useful function, the definition of the semantic process mus:

be provided. These routines are very depenlent on the
source language and the purpose of the language processor. {
For example, the semantic processor of a compiler typically :

contains the symbol table manipulator and code generator.,
However, for a translator, the semantic processor needs o
preserve the structure of the source programn until it has

been completely parsed, at which time translation can

18

e e

proceed. The data structure that was selected to represen:
the program was the parse tree. An example of a partial
parse tree of the assignment statement from figure 1 is
shown in figure 2. The labels on the links in figure 2 will

be discussed in the next paragraph. °

{assiznment-statement>

{target-list> = {expression®

Fig 2. Partial Parse Tr

(R

Tihte reason that this structiare was serected wvas Delasarse 1

records the complete parse of the source prugra adnl allos

further processing on an elemnent-by-eclement baosis.

The specific data structare thAat sas sewected Lo

4
represent the parse tree was a linkeld List. The node ~hiio

N 4} A

represents the assignment statemnent 10 figure 2 would

consist of four list elements, one describing the node anid

three identifying the subtrees of the node, and is shown in
figure 3. This 1is accomplished by using four identica!
elements each containing the three following fields:
(1) NODE'PTR which is an integzer field, (2) LINK'TYPE which
is an integer field, and (3) NODE'LINK which is a pointer

field containing an absolute machine address. The contents

19

NODE'PTR [369

LINK'TYPE 0

NODE'LINK

NODE'PTR a —> <(target-list>

LINK'TYPE 0

NODE NODE'LINK

NODE'PTK b —_—> =

LINK'TYPE 0

NODE'LINK

NODE'PTK c —> <expressiond

LINK'TYPC 0

NODE'LINK

Fig 3. <assignment-stmt> Node

of NODE'PTR of the first element of the linked 1list
representation of a parse tree node contains the production
number, or language rule, _hat was used to obtain the node
from its subtrees. NODE'PTK of all other elements of a node

contain the node number which identifies the subtrees. The

20

L-—__'_'-_'-"—---—-—-———---‘

s S —

valueo contained in NODE'PTR of these remaining elements
correspond to the links shown in figure 1. LINK'TYPE = ¢
for all elements of an internal node of the tree and
indicate that NODE'LINK points to the next element of thu
node. The final element of a node will have a NODE'LI.:.
that has a null value. Using this structure to describe

node within the tree, the nodes of various sizes can
efficiently stored without wasted space, a very importa.:
consideration in such a large software project. Thi-
structure also allows for the dynamic neture o7 tiic Lro.

during the translation process.

If the node 1is a terminal node, a lcal of thoe treo,
then the value of LISK'TYPE will bLe non-zero and thc otnor
fields will have other meanings. For all teriinel node.,
NODE'PTR will contain the token number of tne cternin.!
symbol. 1f the terminal node is a reserved word or symbol,
LINK'TYPE will have the value 3, and WODE'LINK will have o
null value. I1f the terminal node 1is a <naney or
{character-literal>, LINK'TYPL will have the valuc 3, bu:
NODE'LINK will point to another element which will be
interpreted as follows. 1f the node is a <{namc>r,
NODE'PTR = 0, LINK'TYPE = 3, and NODE'LINK points to thc
symbol table entry for the <name>. I1f the node 1is a
{character-literal)>, NODE'PTR <contains the index into thc
string table to identify the string, LINK'TYPE = 3, and

NODE'LINK has a null value.

21

1f clic cerminai node is an <dinteger-literul>,
LINK'TYPE = 1, and NODE'LINK points to an element that
contains the integer wvalue of the node. If the terminu!
node 1is a <real-literal>, LINK'TYPE = 2, and NODE'LI.K
points to an element that contains the real value of the

node.

The parse tree is a collection of these nodes, sucn
that the root of the parse tree is the {complete-progra.™
and NODE(I) contains a pointer to the first element of the
Ith node. J73 has pointer variables whicn can be casily
manipulated to implement & linked list structure; however,
the current compiler does not yet support execution tine or
dynamic allocation of memory. Tnercfore, it was ecessar:
to declare a HEAP, or large storage space, wialch can Do uscs
to store these dynamic elements. In order to maxe cfficicon
use of such a neap, & dynamic allocation alporvitic,
implemented as a function KEWP, 1s wused Lo conty
allocation of new elements. During the parsing process lin
parse tree is continually growin, and deallocation ol uscu
heap space does not occur. Tnerefore, NENT'RODE, wnicn 1,
the index of the next available NODL, needs only to bLu
incremented by one each time a node is allocated. Likewisvy,
NEXT'HEAP, which 1is the pointer address of the newst
available heap space, needs only to be incremented by thc
size of the space to be allocated. Additional routines and
data structures to implement the allocation algorithms wil!l

be covered during the discussion of the translation modulc.

The hneap 1s also used for storage cf the svmool table,

For a translation system, the entire symbol table must be
kept until the translated program can be output since Ui
terminal nodes simply contain a pointer into the svilol
table to 1dentify the <name> of the node. This i-
contrasted to the maintenance of the symbol teble in o i
pass compiler where the symbol table entries for o .iven
lexical level can be deleted when that lexicul level i
exited. The symbol table is stored as a hashi-code! {

collection of separate chalins (Ref 10:513) whoere HEAD(D)

T X UL DN

contains a pointer to the first symbol table entry iu ti.
Ith chain. Lacn element of the symbol table contains tive
fields: (1) SYS'STORE'PIn which is the indes 10io U
chardcter storage array for tnce first character ol Ll
symbol, (2) SYMBOL'LEYNGTH whicn is the number of char . olor
in the symbol, (3) SY!I'LINK which contains 4 polnter tu i
next element of tnce chain, (4) TYPE'CLASS which is uscl
define the clilass oi the symbol, and (5) Proc Ul whicn
indicates which procedure the svmbol was declared in. Too
possible type classes are listed in table 11 and arce uscl
: during the parsing process to return the proper roken sviwol .

from the lexical scanner. PROC'NU:T 1is used to allow tin

same <name> to be used at difterent lexical levels. Another

array, PARENT'PROC, is used to identify the nesting of the

procedures.

Symbol table entries are made by the scannin,

procedures at the time that the symbol is first scanned in

23

.....--"'-"""""""'-'-'-'----------------_.------r—~ e

ot e ———— s+ e TR L AN

-

et s

ol mane TS

TABLE 1I1

Type Classes

Value Classification
0 <{name> .
1 {item-type~name> ' !

2 {table-type-nane
3 <{block-type-nare>
4 {proc-name>
5 <label-namne>
6 {define-nane>
7 {proc-label-name>
procedure NAME' RESWORD. Tne scanner also ocuilds tin

terminal nodes of the parse tree and provides the nusber ui
the node to the semantic processor for the semantic stuca,
The remainder of the semantic processing is accomplished in
procedure SEMANTIC, which 1is called from DO'REDUCT when
reduction is to take place. Tne semantic stack wiil contain

the node numbers of each of the subtrees of the curre::

production, or rule, that is to be reduced., The semantic
process consists of building a new node whichh combines U
subtrees of the production. For example, tne production

used to build the assignment statement is sthown in ti_urc 4.

{assignment-stmt> ::= {target-listd> = <expressiony [

Fig 4. Assignment Statement Production

When SEMANTIC is called, the number of this production 1is

passed as a parameter and the new node is built from the

semantic stack. The elements on the rigut hand side o:r toc
production are at the top of the stack and are wused to
construct a new node as follows: (1) the production numbuer
is used to construct the first element of the new nodc,
(2) the last element of the node is on top of the stack wn.
is added to the node by creating a new elewent and linsing '
it to the first element. The process of popping the
element from the stack and inserting it after the tive:
element of the new node is repeated until tne complete node
has been constructed. The reduction process Lhch pusiivs U
new lefthand side of the productivn and the nes node thae J

was just constructed onto the stacks.

The semantic routines alsc add inforzation o Lin
symbol table when a declaration is processcd Lo eslabilsn
the c¢lass of the syubol table eniry. For exarple, tin
production in fijure 5 would cause the syubol ctable onur. }
for <name> to be set to indicate that the entry is

item=-type~namc>.

{item-type-dec> ::= TYPE <name> {item=-type-cescription ;

Fig 5. Declaration of Item Type

The same actions would apply for processing of block
declarations, procedure declarations, label declarations,

table declarations, and define declarations.

When the parsing module has conpleicu ils processing

the parse tree and the symbol table will have been

constructed to allow the translation process to begin.

Translation Module

Translation of the J73 program is accomplisned in two
separate steps., The symbol table 1is processeld 1tirs:

followed by the processing of the parse tree. Processia, o

<

the symbol table translates J73 identifiers into ad.
identifers. The identifiers of both languages consist
primarily of letters and digits. The only difterences

R

between the identitiers is the use of the dollar si n and
the single quote in J73 and the use of thce underscore in
Ada. The dollar sign is used to represunt special
characters that wmay be requircd in external names and is
implementation defined. Ada has no eguivalent structurce;
therefore, the dollar sign 1s not translatable and is not
allowed 1in programs to be translated. The usc of the J73
single quote is similar to the use of the underscore in Ado
but J73 allows a more liberal wuse of the single cquote.

After surveying the programmers who use J73, it was foun.

that the most common usage of the single quote was as u
seperator between parts of an identifier, Such usa o
conforms to the rules of the use of the underscore in Ada
and the translator was therefore designed with the
requirement that the use of the single quote conform to the

rules of the wuse of the underscore in Ada. One other

20

o

assumption was made
generate new identifiers:
of Ada reserved words,
translation of identifiers

changing all single quotes

to preclude the regulrelciit coal [l

J73 identifiers will not

This greatly simplified »

since all that is now required :.

into underscores during a sini

cConsise

<

A

pass through the symbol table character strin, stora v
Processing of the symbol table in this wmanner results i
each 1identifier being translated exactly once instead

processing an identifier each time that it .: found in .

parse tree, I1f JATS was an interactive system, the abov
limitations could be remcved since JATS could Tegues:
assistance from the user to rename any identiticr thal wa:

found to not conform to thne rules of Alu.

The remainder of the
manipulation of the
Translation of the

required since the

translation

parse

terminal

tree by

nodes, or

process congists ©

procedure TrialsLal:.

leaves, 1s not

translation of identifiers aas alreo s

been accomplished and blanxkct translation of reserved wor.

and symbols is not performed.

language production

processed based on
construct the node.

fashion, with

before the node itself will be processed,.

first
number for the

appropriate

oriented,

The tree 1s processed ian a4

node and

action through a case statement.

The translation process |

that 1s, each

the production number that was uscd !

Recall

this 1is used to

Each lan_ux

27

[}

node 1.

(9]

bottox up
each subtree of a given node being processcd
that thu
element of each internal node contains the production

select the

I

production will have a «case alternative that definces ..,
specific actions, possibly none, that take place Jur::.
translation of a node that was constructed with i
production. There are four basic processes that ar.
performed during translation: (1) changing reserved wor.l.
and symbols, (2) adding new terminal symbols, (3) deleting
existing elements, and (4) rearranging the elements of 1o

node. Each of these operations will be discussed turtherr.

B

The process of changing & reserved word or svibor -
simple given the structure of the parsce tree. Gioo Lo
proper element of the node 1s didentiriced by o polntor

variaole, NODE'PTR of taat elemen: identifies Laoe tersin.’

node that contains the vrescerved word or syviiol. Tiic
NODE'PTR of this terminal node contains i todel nonior
that identifies the reserved word or symbol. The process o

changing the reserved word or symbol then simply regaire

changing the wvalue of NUDL'PTR at tae terminal node. 1 0
process of changing a symbol or reserved word 1s periors ol
by procedure ChALRGL'NUDE. The translation process oY tin
assignment statement from tigure 2 is shown in tigure 6.
When the node that represents the <assignment-stmi> is
translated, a pointer wvariable, N'PTR, 1is wupdated Lo
identify the second element of the node, JODE'PIK at this
element identifies the node that represents the equal sign.
The wvalue of NODE'PTR for the equal sign is 48 and i-
changed to a wvalue of 171 to represent the assignment

operator of Ada.

'
NODE'PTR 369
LINK'TYPE 0
NODE'LINK
NODE'PTIR a —> (target-lise>
LINK'TYPE 0
NODE NODE'LINK [
I
NODE'PTR b NOLE 171
LINK'TYPE 0 —1—§>b 3
NODE'LINK
A\
NODLE'PTx ¢ —> <expression>
LIOK'TYPE 0
NODE'LIGK
Translation c¢f <assignment-stmi>
The of adding new terminal symbol to the

production is a little more difficult.

a new node and insertinyg a

elements

position of the

makes

new

up the node.

new element

element 1in the chain

identified and the

It involves creating

This requires that tiw

terminal symbol be specified. Once the element tiet ...

i

preceed the new element has been 1identified, proceiu:r.
ADD'NODE will <create a mnew node that represeints Uhe .o .
terminal symbol and establish the necessary links. e
process 1is shown in figure 7 tor the translation o
{label> where a new svibol, <K, must D¢ added Deolove
{proc-label-name> and the colon followin L

4
'

{proc-label-name> 1Is changed to >>.

NODE'PTw | 305 = N
LIGK'TYPe| O J

NODLTLINR

NODE NODE'PTx = <{prov-labei-ng .

NODE'PTR —

LINK'TYPE O

NODE'LIIK

Fig 7. Translation of <label>

30

The process of deleting an element of & node is rotoor
! simple, just relink the appropriate elements of the chain
eliminate the desired element. However, since the tree is

dynamic structure, the utilization of the heap 1is

efficient when some type of storage reclamation is perforic. -
as elements ot the tree are deleced. Tnerefeore, .-

procedures, DELETE'NODE and DELETE'SUBTREL, are used tuo frc.
heap space when a node eleneat is deletel from tne pars.
tree, DELETE'NODE releases thne identified clenent 1rot Lo
node's chain while DELETE'SUBIniEE releascs ol Nuolis oo
elements of the subiree that were deleted as a vesolt of 1o
deletion or tne indtial element. Howevery, sorc Chaiios Lo
the allocation algoritans were Tegaoirved Lo Inple o
reallocation of the space collected throoslhy stov.

reclamation. Using an overlarsed duaZa SLruciure Codll faoe

can contdin either a pointer value, NODE(1), o a node il
or an integer value, Freb'ZODE(I), which Indeses che ne

node o0f the linked list of availao.e nolos. N
NODE (NEXT'NODE) is allocated, FRLZTIUDE(CILYT 0L Ccontaln
a link to the next available noloe. NOTO o ULhaln Nt

cannot simply be incremented as during the parsing prucco-.

Storauge reclamation of the released node elemenis s

accomplished by linking the elements togetner wusing ti

already available pointer field RODE'LINK. If a list o ;
available elements exists, FREE'PTx 1s a pointer to Lo

first available element in the list and NODE'LINK o %
FREE'PTR is a link to the next available elerment. T i }

31

St

list is empty, FREE'PTK = NWULL, aund allocation irow choe e

is necessary,

Rearranging the elements of 4 node 1s also a sinpi.
operation with the structure of the parsc Lrec G
corresponds to swapping the order of the subtrees or a nodc.
Procedure SWAP'NODES 1is used to swap two elements taat are
adjacent, 1f the desired elements are¢ no: ad acent,
repeated swaps must be performed until tne Jdesired cnan, e i
achieved. An example of tnis process can be sconr In Ll

translation of a <program-body)> using production nuiier 7.

[
3
(@]
.
P
-
e
o
C
\
o
e
‘o
-
{;-"

The structure of the parse
figure 8b shows the resul:is after swapping Loov eaclunls Loat

correspond to the nodes derining 3Gl ang {deo-lisiv,

<

a. BEGI.o <dec-list> <stmt-list>
b. <dec-list> BEGIN <{stmt-list> <su! C
{direct-compound-end”

c. {dec-list> BEGIN <{suab-def-list> <stmt-lisz>
{direct-counpound=-cnd?

d. <dec-list> <sub-def-list> BEGL <stmt-list>
{direct-compound-cni, ;

Fig 8. Translation of <{program=-bod. >

Then <stmt-list> and <sub-def-list> are swapped resultin, in
figure 8c. Finally, BEGIN and <sub-def-list> are swappc.

and a semicolon is added as the last element of the node U

comple. che translation as shown in figure &d. Lote Lo
the first element of the two that are to be swapped mus: be

identified by a pointer variable each time.

One other procedure 1s wused during the translatio:.
process to simplify the actions taking place, That Q-
procedure MOVE'PTK, which simply moves the pointer in the

node's chain of elements a specified number of elemunts.

Most of the language productions thatl have Duvl

translated wused simple additions, deletions, and chan_os o

the nodes. However, somc of the translations required o
WOTK . One example 1is thne translation ol inte-er itd
declarations that specified the <integer-sice> ol L
variable. Althoush the translation doos nat inv. oo U

representation specifications ot Add, ran ¢ consirain-s
placed on integer wvariables whien possitlc. Trotio U
integer was unsigned, tnen the rauso Is ospecizica

0..2%%{integer-size>=1, If the inte_ur wos si_og, Lo

e
3
[
-
.

range or tac resulting equivaicnt Adu vard
-(2%*{integer-size>-1)..2%"{integer-sized=-1, tHoweooy, .
translation still wuses simple additions to consiruct tix

node.

J73 character items are translated into Ada objiecte ol
type STRING, where the string would be indexed in the ran o
1..{character-size>. witn this convention, asl

{character-literald>s can be translated into Ada strings.

33

In sumuary, che translation process involves chan:in |
adding, deleting, or rearranging elements of the parse troe
in order to have the parse tree represent an equivalent Ac.

source program., Most of the translation routines sim; i

1

required the application of one or more of the suppor:
procedures, It should also be noted that a good many of
translation routines reguired no action at all except for

indicating that the node had been translated.

Since the scope of this research project could o
enconpass the entire translation process, JAIS curreatly
translates only a subset of the J73 langua_e. However, Ll
design of the project included the complete translati
process and additional translation processing ca1 be added
to the existing system without major modilications, 11
order to make the current translator as uselal as possibic,
the subset of J73 tnat has been translated was selected)

£

cover as much common wusage of the language as possidle.

This includes: (1) basic program structure, (2) data ites
declarations and type declaratcions, (3) vrocedurc
definitions, and (4) most basic statements. A summary ol

the translated productions is contained in Appendix B.

To aid the user in identifyiny any sections of J7J3 code

that may not have been completely translated, some method of

1

marking each node as having been translated or not must he

-

used. The technique used in this system 1is an array ol

boolean variables that correspond to each node of the tree.

The encive array 1s fual:w azed with the value FALSE and
NODE(I) is translated the corresponding value i
TRAN'FLAG(I) is set TRUE. This will then be used during t.c
prettyprint process to identify the sections of code tn.:

were not translated.

Prettyprint Module

1

The usefulness of an automated translator systen woul'l
be questionable if the format of the output was difticul-
interpret. In order to pget the most out of the translation,

the resulting progran should display the structare of ©ac

language as much as possible. The Ad+ reloerence manas!
suggests sone fornatting convencions tH displir the
structure of the lanjuage. The prettyvprint modale oul)at s

the translated program usiay these formatting convearis ...
The lexical elements that will make up the Ada program ar.
the 1leaves of the translated parse tree and are outp:t Ir

left to right. 1Indentation and liae breaws are coairoll

through the use of a case statement loodking for partioa.

reserved words and symbols. For example, wita the exception
of a formal parameter list in a procedure detinizion,
semicolon 1is a stuatement terminator and is used to generou
an end-of-line and carriage-return., Another exanple 1s the
reserved word ELSE, which must be output two spaces to Lo

left of the current tab marker while the statements between

the ELSE and END IF are output at the tad marxer,

35

Also output during the preltypirint process are waraing
messages that identify sections of code that have not bec:
translated and require wuser translation. This allows thvo

user to quickly identify those sections of code which wi

require attention,

Conclusion

JATS 1is a fairly complex language processor Laas
consists of three functional modules. The parser awwdzle
which was developed using the LLRL software pagra, o

constructs a parse tree of the J73 program., Tne translation
module modifies the parse tree to represent «n ejuivalon
Ada source program. Finally, the prettyprint nodule buills
a formatted text file to allou the wuser to elit the

translated source code.

However, the user shoald bhe aware of seve
limitations of JATs and some of the problens of i1
syntax translation. These will be discusscel in the new

section. Still, JATS should prove valasble for introdu.’

Ada to current J73 programmers.

36

a R—— '-....-.'.l-l-.l.IIIl---.-..-.‘

V Results and Recommend.zis-.

The primary result of this research oproject 1is a

translation system, JATS, which provides a limite
capability for J7: wusers to automatically translate .77
programs into equivalent Ada programs. AV user mMuUs. L

cautioned on several points before usin; JATS. The mos:

™

obvious caution 1is that JATS

, as it is currentis
implemented, 1is incomplete and places several restrictions
Al

upon the user. These include: (1) use of (e sinsle quol.

in J73 declared <name>s must conforn Lo the use of e
underscore in Ada and the use of the dollar si t Is a0
allowed, (2) J73 <named>s canncl be Ada reserved words
(3) <block=-presetds are not alloweld i1 progr.s- o b
translated, (%) size specifiers in some daci declarations
have limited definiticns as shown in table I, and (») use of
DEFINEs is not allow since the mecnanisa fov processiig U
DEFliZs has not yet been incorporated in JAaTo. A suniary ol

the translated J73 language productions 1s contained ia

Appendix B,

Anotiher point that all users of JATs should be aware oi
is that JATS translates a J73 algorithm into an ejiivalent
Ada algorithrmr, Tiiis means that, while tuc translated code
will be correct, the translated version may not mawce use of
the features of Ada. Such an example is the use of declare.!
boolean flags to carry an error condition through the code,

B

During the translation process, the code will be transiatel

correctly but Ada's exception handling technilques woull
probably be more appropriate. This defficiency 1is not
unique to JATS but 1is an inherent problem in automati:

translator systeas.

With these limitations in mind, JATS was tested against
small example J73 programs that primarily counsisted of tac
translatable language constructs, In all tested cases,
translation was correct where possible and those sections of
code that were not translated were properly identified. One
exception to this result is the WHEN OTHERS case alternative
in the Ada version of the case statement. It will be the
first alternative in the translated version rather than the
final alternative of the case statement. An exinple J73

program and its translation is provided in Appendix .

This research project not only produced a valuable to)’
to aid 1in the transition to Ada as the DoOD standar]
programmin; languane for embedded computer systems but als.
provided the author with an invaluable experience in the
development of language processing software. A tasx of this
magnitude presented a real challenge for the author in
several areas: (1) grammar analysis, (2) parsin, technijues,

and (3) translation techniques.

The LR automatic parser generator package frowm LLNL has
been used at AFIT 1in other laanguage processors, mainly
conmpilers and interpreters. This project added a translator

to the list of projects developed wusing LR. It also

38

e

required modification of LRSS to accept o iav_or oL.,ne
grammar, which will allow future users to process lar o
grammars with LRS. However, it should be noted that Lx- 1.
a very large program wit. a very ldarge memory and processi:

time requirement,

One other area that required considerable eftore .-
designing an LR(1) grammar for J73. Initially, tae 773
grammar was obtained from MIL-STD-15894 and regquired
extensive modification to produce a sramcmar that gas LrR(V).

ot
(=]

After cousiderable effort tuv produce a fully LR(1) grani.er,

an LR(1) grammar for the execatable statemnents ol J75 was

obtained from Softech Inc.; however, sevevral provlens s.itl

existed in the grammar for the declarative parts ol J73 aai,
hl

as a result, several limitations have mecessarily deon

placed on the user.

The other major areas of effort werc the parsiag ad
translation processes a1d the use of the apprupriate Ja .
structures for efficient utilization of resoarces and cioe
of translation. Although the data stractares tieasclv:,
were not new, the implemnentation ol some these structares
was a new experience for the author. An example of this is
the dynamic allocation aléorithms and the use of the OVERLAY
declaration to allocate the same menory tuo two different
data structures, the tree nodes and a linked 1list ot

available nodes.
The process of translation als> identitied sever:

39

areas that present some difficulties. Tne translation o
bit variables will require real work. If the bit wvariable
has a size of one bit, then it can be translated into .
boolean variable, and the bit literals of '1' and '0' can
translated 1into the boolean literals TRUE and FALSI,
respectively, However, if the bit variable is larger tuaan
one bit, then the translation must create an abstract Jdai.
type that will allow the bit literals to be translatced
easily. Also required during translation of bit literals i-
consideration of the bead size. The Dbead size of .+ bi-
literal refers to the weight of each character ot 0
literal string such that a bead size of 16 indicates Lias
the string fépresents a hexadecinal value. The valild besd
sizes range from one to sixteen. 1In other words, the oct:
bict literal 3B'24' is equivaleat to the binary bit litera:
1B'010100" and some coavention of translating the bi-
literals must be established depending upon the specitic

data structure used to implenent the bit variables.,

The translation of parameter lists for sabrouatines will
also be a serious problem. In J73, the typing of the
parameters occurs during the processing of the declarations
in the <subroutine-body>. However, Ada reguires that thc
type of the parameters be included in the pardameter list.
Therefore, translation of parameter lists will require the
generation of new type declarations from the declarations
that are '"hidden' further down the parse tree, so that U,

type names can be used in the parameter lists. Declarsti-.

490

of some of the data items will also reguire generation o:
new type declarations, for example floating anrd fixed dav:

items.

Other items that are not directly translatable are tihc,
directives. Some of them will translate to equivalent Ad:
pragmas but others have no counterpart in Ada. For example,
the COPY directive corresponds to the INCLUDE pragma but the

register directives have no equivalent pragnas in Ada.

One additional experience gained by the author was In
the use of J73. Althouzh experienced with severdl otiher
block structured languages, J73 still presented sone new
experiences, eépecially since the language and coapiler arc
still evolving. However, J73 was an enjovable lanjua_e o
work with; the only real problem encountered was the lack of
execution time error diagnostics, which sometimes made tac

debugsing process difficulr.

A project of this magnitude very often leaves room Ior
future work, and several areas have been identified a4
candidates for continued development efforts. These

recommendations are listed below.

1. Modify JATS to translate J73 as defined in
MIL-STD-1589B. The current version translates '1L-STD-1554x4
and the B version was released too late to be included in
this research project. However, JATS was designed to allow

a redefinition of the input grdammar without najor

41

modifications to JATS. It snould be noted that the sourc.

code for JATS itself currently conforms to MIL-STD-15895.

2. Complete the translation module. As currentiy
implemented, JATS is incomplete and cannot translate all of
J73. The addition of the remaining translation routines
will allow JATS to automatically translate more of the 173
syntax. JATS was designed to allow the addition of the

missing translation routines.

3. Add the capability to process external files so
that COMPOOL and COPY directives c¢dn be wused in the J73
program, This will rejuire the construction of the sviulol
table for the declarations thdat are coantained in the conpoo!
module, and scanning of the external file for tne COVY

directive.

4. Improve the translation process by mnaring U

interactive and allow the user to identify sections of ool

that require manual translation. This would be possibivc
using the currently available SKIP, BEGLYN, and [DA
directives. Then JATS could allow the user to speciiy tiw

translated code interactively for the identified code 1l

for any difficulties that the translator may encountev.

This research project incorporated the use of various
techniques in several topic areas and resulted in o
challenging and rewarding experience for the author. The

author hopes that this project will generate continue!

42

interest in the subject areas of Ada and autonatic

translator systems.

‘10‘

1.

12.

"----...'-..-....-IlIIIIIl......-.......!.-..-.....-..Er__‘!

Bibliograpny

"Alr Force Working on Single Language for iis
Computers," Electronics, 51: 39-40 (25 October 197%),

1979 Annuil Technical Report: A Research Program i»
Computer Technology," Report 131/8SR-80-17, Informatio~
Sciences Institute, University of Southern California,
Marina del Rey, California, June 197y, :

Defense Advanced Research Projects Agency. Re\ulrcﬁgiii
for Ada Programming Support Environments: Stone

Washington, D.C.: Department of Defensec, February 19u\-

Defense Advanced Research Projects Agency. Keguirement -
for cthe Programming Environhenc for the ge:-ez PN

Order Language: Pebbleman, Washington, D.C.: Déparive
of Defense, July 1973.

Fisher, David A. "DoD's Common Progranuing Laijua .
Efforc," Computer, 11: 24-33 (March 19798).

Gillmann, Richard., "An Intermediate Languase for CHn-l
and Ada," Autopsy Note 15, Information SCiences
Institute, University of Southern California, Hariaa

del Rey, California., 12 April 1979y.

Harrison, Michael A. Introduction to Formal langaaje

Theory. Readin Massachusettes: sddison-wesler
Publishing Company, 1975.

J73 Statement Graamar. Softech Incorporated, Waithe:n,
Massachusettes, August 1930,

Knuth, Donald E. The Art of <Computer Progransing,

Volume 1, Fundamental —~ aljorithns tiing,
Massachusettes: Addison-Wwesley Puollsﬁta Cou»in ,
1973.

Knutn, Donald E. The Art of Computer Programning,

Volume 3, Sorting and Searching. Keading,

Massachusettes: Addison-Wesley Publishing Company,
1973.

MIL-STD~1589aA. Military Standacd = Jovial (J73).
Washington, D.C.: Department of Defense, 15 March 1979,

Wetherell, Charles and Alfred Shannon. LR: Automati.

Parser Generator and LR(1) Parser. Report UCRL-8292¢.

Tawrence Livermore National Laboratory, California,
14 June 1979.

15. Whitaw_o, William A. "Ada ~ Tne DoD Common iign Ur
Language Effort," NAECON 1979, 3: 1272-1.275
(March 1979).

J--"-'-llllll-—---'---lI-I-----------:~—!“

»

Appendix 4
LR: Automatic Parser Generator and LR(1) Parser

"LR is a pair of programs--an automatic parser
generator and an LK(1) parser. The parser generator
reads a context-free grammar in a modified BUF
format and produces tables which describe an LR(1)
parsing automaton. The parser 1s a suite of
subroutines which interprete the tables to construact
a parse of an input stream supplied by a (locally
written) lexical analrzer., The entire systen may bDe

used to generate parsers for compilers, utility i
routines, command interpreters, and the lixe. L~ 3
and its predecessors have been in use at Lawreaoo ;
Livermore [National] Laboratory (LL[N]L) fovr ten {

years. LR's outstanding characteristic is the
witnh which new tables can be generated to reflieo:
chan_:e 11 the language to be parsed.
flexibilizy is prized by programrers Jriti
utilities and command interpreters whosc i
lan_uages typically grow and change during progr.
development, LK 1is written entirely 1in :
standard FORTRAN 66 and requires oniy minor chaa e
when moved to a new couputer” (Ref 10:1).

5

LR was an important part of the Jals SOt .
1
development. Major “Michael Wirth has beenr instrunencal in

pronoting the use of LR in the development of conpilers o
incerpreters at AFLT. A comnplete understand

)

requires knowledge of formal langua_e theory Dbual 15 1o

required to use the package. However, for the interesie!

[o%
I
=
r
=
-

reader, an understanding of the data structures use

parser tables 1s helpful in wunderstanding the parsing

process.

The parsing tables produced by LRS consist of 4

collection of arrays, FORTRAN dimensioned variables, th«- ;

contain the control information for the finite StLa' e

R

automaton which performs the parsing.

The wvocabulary of the language is described using two
arrays, V and VOC. V contains a contiguous stream oI
character s:irings which are the vocabulary elements., VOU

contains pointers into V to 1identify the start of

-
-

vocabulary string that has the token number which is

ot

index into VOC. Figure 9 illustrates this relationship and
shows that the token number for the reserved word PRIGRAM 1%

138.

N N

VOC N a+7

Fig 9. Vocabulary Data Structure

The transition data is contained in three arrays: FIRXD,
TRAN, and ENT. FTRL contains pointers into TrRAR which
contains a set of state numbers for possible transitions.

jo

ENT contains the token number of the required lookaheald
symbol for a transition tu that state. Figure 190

illustrates this structure. Thus, for a given state, S, a

47

- J
TRAN el s2 s3 S4 s5
L /
F1RE K |K+5
I L ;o
S S+1

L 1L / L /1 n /
ENT {j 1 2 t3 " £

~
™

L

[

-

=
LT

177}
to
7]
o
97
:
v
v

st

Fig 10, Transiczion Datd sStructure

N

search of the possible states in TrRAN for an alloswabio

transition based upon the current lookahead syvmbol and the

entrance symbol will identify the next state oL i
automaton, Thus as shown in figure 19, frow stdate =5 o
transition to one of five stdates, S1,...,S5, 1s possiric

based upon the lookahead tokeuns Tl,...,T5, respectivels,

The reduction data is contained in seven arrvaiys: Fxio,
NskET, LSET, LS, PROD, LHS, and LEN. LS and LSET derine thiv
lookahead sets where LS contains the 1nokahead sets as 2
contiguous array of 1integers, representing the token
numbers, and LSET identifies the beginnin,; of each lookaheil
set., Therefore, each lookahead set can be i1dentified by it=s

index into LSET. NSET contains collections of lookahead sct

48

numbers and FRED contains pointers int. WSUL wnicn Ldenticy

the collection of lookahead sets which apply for the sive

reduction, If one of the lookahead sets of the given sti.,

S, contains the current token, PROD(S) contains the langua v

production numberxr that will be wused to perform tac

reduction. Figure 11 illustrates this relationship,.

i /,
LS T1 I T3 Ty
/'[. /L

J J+3

L _ /
FKED J 13+
L /

Fig 11, Reduction Data Structure

Thus, for a given state S, FRED identifies, through NSET and

LSET, which lookahead sets must be checked to allow the

reduction in PROD to be useu based on t.c Curte 1l stale asl’
current lookahead symbol. The remaining two arravs c¢oHno.i;
the reduction information. LEN contains the length of - .
righthand side of the production and LHS contains the torn

number of the symbol on tne lefthand side of the production. ¢
When the reduction 1s perforued, EN will indicace U
number of elements that will be popped ofi of the stacrs a!
LHS contains the token number that will be pushed onis L

token stack.

Note, these data structures are produced it .o
FORTRAN 66 option for table structure and wvere retainedl 0
JATS 1in order to use the same parsing al_jdritims tain wor o

supplied in PRy,

However, before a coaplete set of parser tabloes
generdated several changes were regaire! to alloe L
accept the larzge J73 gramuar. These changes Involoe
increasing the sizes of some of the dimenslioned varia .o
and other related variables. The string storage for th
input grammar was limited by the dimension of SSTURE and L
value of MAXSST. To allow for the large nunbher o
productions, the value of MXPROD and the dimensisza of Pwulli.
had to be increased. Also dependent wupon the nuanber o
productions was the dimensioned variable IARK within
subroutine COMPLT. The storapge of reduction and transition
data was limited by the dimensions of RED and Tka.x,

respectively, and the values of AR RED and AR

50

respectively, Other dimensioned variables usci .t
grammar analysis that had to be increased in size wo:o
BASIS, NEXT, ITEM, and PRODCN. Tnese chan_es are summari.o!

in table ITI.

TABLE 11L¢

. !
Changes to Dimensioned Variavles of L:. ;
Dimensioned Dimensions Related
Variable 0ld New Variabio
— . .] ce v N “
SSTORL 3000 100V DR
PRDIND 500 1050 PR !
TRAN 4000 206000 IR AN i
RE 4000 3004 Lt |
NEXT 5000 3200 LU
ITEA 5001 8yl VST
BasIis 80u0d 24900 Thasin b
PROODCH 40050 0.0 VSIS
MARK 504 Ty P
The other c¢hange that was cate T LBY was o
convenience. Another sdbrouatine, cailed OUI[An, was adled
which «created separate outpat tiles for tiae parscr tanles
and grammar analysis, This change regaired thao 10l calls
to OUTPUT within subroutines TABLEU ana HLDDHP be changeld to
OUTTAB. :

51

Appendix B
J73 Language Productions

The following 1list 1is the language productions

output from the grammar analysis of LRS. Those productio

that have been translated are preceeded by an asterisi,

1T <SYSTEM GOaAL SYMBOL> ::= END <COMPLETE-PROGRAAY END

*2 {COMPLETE-PROGRAMY> ::= {A0DULED
*3 / <COMPLETE-PROGRAM» <A0DUL=>
*4 <MODULEY> ::= <{COMPOOL=-XODULE>
*5 / <PROC-MODULE>
*0 / <MAIN-PROGRAA-MODULE
7 <COMPOOL=-MODULEY> ::= START <COMPOUUD-COMPOULY <atn
<COMPOUL-DEC-LISTY <COtpouil —lnxf
8 / START <COMPUUWD-COMPOOLY <NA.L.>
{COMPOUND-TERD
*9 <COMPOUND-COMPOOL> = COMPUOL
*10 / KDIRECTLVEY <COMPOUND=-CIMPauLD
11 <(PROC=-MODULE> ::= START <DEC-LIST>
CNON=NESTED-SUB-LIST» {CoMPu -1
12 / START <NON-JLs[rU SUB=-LISTY
<bo\1POUk\D i L;I‘(2
%13 <NON=NESTED-SUB-LISTY ::= <NON=NEST=D-SU:5>
*14 / <NOil- whbrr)-s BaLIaT
CNOH=-NESTED=SUH>
15 <NON-NESTED-SUB> ::= DEF <{SUB-DEF>
*16 / <SUB-DEF>

*17 <MAIN-PROGRAM=-MODULE>
::= START <{COMPOUND-PROGRAM> <WAMED ; <LCOMPOUND-BIDY,
{NON=NESTED-SUB-LIST> <COMPOUND-TLERY)

*18 / START <COMPOUND=-PROGRAD> <NAUE> ; <CuMPOURD=-BODY)
<COMPOUND-TERM>

*19 / STARI <CUMPOUND-PROGRAM> <NAME> ; <STHMTIY
<NON-NESTED-SUB-LIST> <COMPOUND-TERMD

*20 / START <COMPOUND-PROGRAM> <HANE> ; LSTHT
<COMPOUND-TER!MD>

-

*21 <COMPOUND-PROGRAM) ::= PROGRAM
*22 / <DIRECTIVE> <COMPOUND-PROURY. >

*23 <COMPOUND-BODY>
*24

{PROGRAM-BODY>
<DIRECTIVE> <COMPOUND-BODY>

~

*25 <{COMPOUND-TERM> TERM

*26 / KDIRECTIVE> <COMPOLND-TLRMY
*27 <PROGRAM-BODY>
::= BEGIN <DEC-LIST> <{STHMT-LIST> 3UB-Dsb-Listio
<{DIRECT~-COMPOUND=~END>
*28 / BEGIN <DEC-LIST> <STMT-LIST>{DIRCCT-COMPOVLD=-1tL,
*2 / BEGIN <STAT-LIST> <{SUB-DEF-LIST>
<DIRECT~COMPOUND-END>
*30 <DIRECT~-COMPOUND~END> ::= <{COMPOUND-ELND>
*31 / <DIRECILVE>
<DIRECT=-COMPILUWD=-L00
2 KINTEGER-MACHINE-PARAMETHEK = BIToLlasYi-
33 / BITSLNWORD
34 / LOCSINJURD
35 J O BYTHESINWORD
36 / BITSLINPOLaIR
37 / FLOATPRECLS L0
38 / FLXEDPRECIS IO
39 / FLUOATRADIA
40 / 1TAPLFLOATPRUCISLON
(<FORITILAD)
41 / IMPLFLXEDPRSCLSION (
<FORMULA> , <FORILJLA -
2 /O IMPLINTSLOE
(<FIRULAD)
43 /AN FLOATPRCOCLS L
44 JOMALFINEDPRECISTON
45 S MAXLNISL Y
46 /O MAEIAY LTSS
47 / MAXBL IS
48 J MAXINT (<FOrChLar)
49 J MINLISNT (<FoxAlLar>)
50 / MAXSTOP
51 / MINsToP
52 / MAXSTGDIGITS .
53 / MINSLZE (<FORAVLAY>) ‘
54 J O MINFRACT)N \

(<FORMCLA>)

MINSCALE (<FORMULAY)
MINRELPRECISION

(<FOKR™MULAY)

wn
(9]
— T

57 <FLOATING=-MACHINE-PARAMET=K
;1= MAXFLOAT (<FORMULA>)
58 / MINFLOAT (<FORUIULAY)

53

5Y
60

61
62

*63
*64
*65
*66

*67
*63
*H9
*70

71

72

73
*74
*75
w7

D
86

*57
58
#37
90

*091

*92
*93

*95
*96

*97
*93
*99

/ FLOATRELPRECISION (<FOKICLA>)
/ FLOATUNDERFLOW (<FORMULA>)

{FIXED-MACHINE-PARAMETERD
1= MAXFIXED (<FORMULA> , <FORMULA>)
/ MINFIXED (<FORMULA> , <FORNULAD>)
<{DEC-LIST> {DEC-LIST>
<DEC-LIST> (NULL-STHT»> <D
<NULL=-STMT> <DEC
<DEC>

N
o
[
(@
4

<{DATA-DEC>
{TYPE=-DECD

<{SUR-DEC
<STMT=-NAME=-DECS
{DEFLNE=DEC
CEXTERNAL-DECD
COVERLAY-DEO
INLINE=-DEC

BEGL: <DEC~-LIST> .
<DIRCCTLVEY> <N=C»

e |

CCOMPOOL=-DEC-LISTy o= KCOMPOOL-DNU=-LIx0 0 oy =0
FEEANCUIS DL U6

CEX[innNAL=-D o

SCURSTAN =D

<TYPL=Dul -

<DEFLaw=Diu»

<OVeExRLAY-DEU>

CWULL=-STMI»

BaS LN LUoMPOOL=-D80-L15 T
COLRECTLVE, <ot aa =0y o

{COMPOOL-DECY

N e N |

<DATA-DEC ITrM=Duly
{TABLRE=-DH.
{CONSTANT=DEC
{BLOCK=D505

~ e

KITrEM-DEC> ITES NAMEY {ALLOCATION=sPR I Y ie
{ITEM-TYPLE=-DuSCRIPIL D0

CITEM-PRESET-OPTIOO>

]

{ITEM-TYPE-DESCRIPTION KINTEGEK-IT=DusURIPTL O
CFIXED-LTer=DESCRIPIION
<BIT-1TEM-DESCRIPIION
CCHARACTEKR-1TEM-
DESCRIPIION
CSTATUS-ITEM-DESCRIPILINN
CPOLNTER=-LITEM-DESCKIPIL)0
KITEM-TYPE-NALD

e

- TN

54

CFLOATING=-ITHr=0usCkiPII00

*100 <INTEGER~ITEM-DESCRIPTIO.I> {s=-0K=U>

<ROUND=0OR=TRUNCATH,
<FORMULAD

{5=-0R-U> <FORMULA>

{S-0r-1>

<S=-0R-1

{ROUND=-0OR=-TRUNCAT=D

%

—

(@]

N
S

*104 <S-0R-U> S
v

*
—
(]
wn
~ H

106 <FLOATING-ITEM-DESCRIPTIOND

]

F CROUNIID=0x-TRUNCAT > 1
CFORMULAD
107 / F <FORMULAD
*108 !/ F
*109 / F CROUND=-Dn=TRUNCAT,.S

10 <ROUND-OR=-TKUNCAT&> ::= , Kk
) .

112 <FIXNED-TITEM<DISCRIPTIULD ::= A CROUND=UR=TRU ool
CFURMILAY> |, (Font s

/oA CFDORAVLAY , <FOR L

/A CFURIULA>

; SA KROUND=OR-TR L. oo

, CEORMULAD

— —d e

s

U e
-~

CBIT-ITEM-DESURIPTIOND := B {FUKMILAD
/ B

S
—
—
~ O

%118 CCHARACTHR-ITEI=-DEICRIPTIOND 1= C {FIRITLADY
*119 : C
120 <STATUS-ITuM-DESCRIPIIOND o= STATUS JINTranr-LITurA
(<STals-Lisi»)
121 /OSTATTS (<STAT 's=-LisT>)

CSTATHS=COHnTARNDY

CFORMULAY {3TATUS-CONSTARD»
{BTATUS-LIST> , STATUS-COLs AN
{STATUS-LIST> , <FORMULAD
CSTATUS=-CONSTANTY

STATUS-LISTY

ot ok
(G I SRR

S~

126 <STATUS-CONSTANTY> ::= V (<STATUS>)

127 <STATUSY = NANED
128 / <LIR>
129 / <RESERVED-JORD>

130 <POINTER-ITEM-DESCRIPTIOND

P (TYPE-NAMED
131 P

~

132 <TABLE-DEC)> ::= TABLE {HAME> <ALLOCATLON-SPECLFL'.~>
CDIHMENSLONSLISTY> {TABLE-DESCRIPIL Mo

[Wal
(W]

e e)

133

134
135
136

137
138

139
140

141
142

143
144
145

146

147
148
Ta9
150
151

—_
w
r

(GG R RV R,
[e SR NN N W AN S U]

165

166

CTABLE-DESCRIFT1Gr ~ CSTRUCTUKE=-SPECLIFLury
SENTRY=SPECIFILER>
{ENTRY=-SPECIFLEK>
<TABLE-TYPE=-NAMLD>
<TABLE-TYPE-NAILD>
{TABLE-PRESET> ;

S

CENTRY-SPECIFIEK>

CORDINARY=-ENTRY-SPECIFLiur
{SPECLFLED-ENTRY~SPECLFLE .

~

<DIMENSION-LIST> ::=
/ <DIMENSLON-LIST-HEAD -)

CDIMENSION-LIST-HEAD> ::= (<DIMENSLIOID
/ KDIMENSION-LIST-H:4w
<DIMENS LN
<DIMENSTIOND CLOWER=-BOUND> <{FORIULAS
CFORMULAY

Y

R . 1|

CLOWEK-80UHD> @ := JFORMULAD
<SIRUCTURE-SPECLFLERD Pazallbi
CLaThorr-nl Ty
CFUNCIL Da-a D
INAALD

-

e
el)

COKDINARY-ENTRY-SPECIFLERD

c:= CPACKING=SPECLFI-RY> {ITHEM=-TYPZ-Duy =100
{TABLE~PRESETY
CPACKING=SPECLFLERY ITEM-TYPE=-Db ~1200 0l
KITEM=TYPE=DESCRIPTI D> KTARL--PR i1
KITEA-TYPE-DESCRIPTLIULY
CTABLE=PRESETY ; <ORDINARY=Tanlr== 1>
; CORDINARY-TABLE~-BOLYS
CPACKING=SPECIFLERD> {TanlF-Pxinils
<ORDINARY-TABLE-BODY>
/ KPACKING-SPECLFLzKY ; <ORDLNARY=TARLE==Y

T e TR TN TN T

CPACKING-SPECIFLER> ::= 1

PPN

~~

CORDINARY-TABLE-BODY> CORDINARY=TAnL Y1 Tuv=-0000
Brolad CORDINARY=TABLY -

OPTLOLs-LINT> i

il

S~

<ORDINARY-TABLE-ITH-DECY
;= ITEM <HAAE> KITEM-TYPE-DESCRTPIIOND
CPACKING-SPECLFLERD> <TABLE-PRESED>
/ ITEM NAME> <KITEM-TYPE-DESCKIPTION.
CPACKING-SPECLFLERY

56

167
168
169

170
171
172
173
174
175
176
177
173
179
1890
131
182

183

190
191

192
193

194
195

/oL1ieM KBAMED KITEM-TYPL-DESCRIPTION
{TABLE-PRESET> ;
/ ITEM <NAMED> <ITEM-TYPE-DESCKIPIION> |

<ORDINARY-TABLE-OPTIUNS-LIST>
;= CORDINARY-TABLE-OPTLONS-L

<ORDINARY-TABLE-OPTIONSY

/ <ORDINARY-TABLE-OPTLONS>

IsST»

CORDINARY-TABLE-OPTIONS> ::= <ORDINARY-
/ DIRECTLVED
/ NULL-STH™

TABLE-ITEN-Dn

<SPECIFLED-ENTRY-SPECIFLER
= <WORDS-PER-ENTRY> <SPECIFLED-LTI:
<TABLE- PR_~ML> ;

=DEsCRIPTION,

/ SWORDS-PER=-ENTRYD <SPECIFLED=TTEN=DZSORI 1000
/ <KWORDS-PER-ENTRY> <{TABLE=PRESET>
C{SPECLFLeD-TABLE-BODY>
/ CWORDS-PER=-ENTRY> ; <OSPECLFILOD-TARLE=8207 0
CWOKDS-PEK-ENTRY> ::= W <1W1(§9h—’IT“~x >
/ W CFCORCTLON=CAlLlD
f o NATED
JAREN
CSPECLFIED-ITEM=-DESCRIPILY
c:= {IT=1-TyrE- DL5¢~‘91;U,» PUs
(<LOCATLON=-SPECIFLrr>)
CLOCATION=-SPECLFL=ZRY 1= (STARTING=-311> | (Foa i
{STARTING-BIT> ::= <FORMULAD
CSPECIFLEZD-TABLE=BODY> ::= {SPECILFILED-TARL =1 [-=-Dolo
FORSGIN SPECIFLED=-Tan -
OPT_JNE-L0s0> w0

(SPECIFIED-TABLE-ITEM-DiC>

1= ITEM <NAME> <SPECIFL
{TABLE-PRESETY ;

/ ITEM <NAME> <SPECLFLED-ITEM=DESCRIPIi)a

ED-1IEM=DESCRIP TN

{SPECILFIED-TABLE-OPTIONS-LIST>
::= (SPECIFIED-TABLE-OPTIONS-LISI>
CSPECLFLED-TABLE-OPTIOUS
/ <SPECIFLED-TABLE-OPTLOISY

{SPECIFLED-TABLE-TITH™-
D=U»

<DLK£QYLCﬁ>

{NULL-ST

{SPECIFLED~TABLE-OPTIONS>

~—

*196

197

168

199

200
201
202

{CONSTANT-DEC>
= CONSTANT ITEM <NAME> <ITEM-TYPL-DESCRIPTLON> =
CFORMULAY
/ CONSTANT TABLE <NAME> <DIMENSION-LIST>
<TABLE-DESCRIPTION>

{BLOCK-DEC>
:= BLOCK <NAME> <ALLOCATION-SPECIFlur>
<BLOCK-BODY-PART>

/ BLOCK <NAME> <ALLOCATIOWN-SPECLFLor>
{BLOCK-TYPE-NAME> <BLOCK~PRESET> |
<BLOCK=-BODY~PART> = NULL-STHID
/ <DATA-DEC>
/ BEGLN <{BLOCK=-BODY-QPTI)ns-LIsl>

| SR

<BLOCK=-RBODY-OPTIONS-LISTY = {RBLOCK=BODY-0P Il 0ns-L1Y >
CBLOCK~BODY-0PIL0e>
S K BLOCKSB0DY-0P 100>

<CBLOCK=-BODY-0PTI NS> {DATA-DEUD
{OVERKLAY=-D=ZO
CDIRECT IV >

KNULL=STH0>

>~

CALLOCATLON-SPECLFLEZKY =

JoSTarll

CITHH=PRESET-OPILOID =

CTABLE-PRESaI> ::=

-
|||
”~
i
28
o
-
t
s}
or
"y
v

KNULL=PRESED> .=

CTABLE=PRUSE[-LISTY ::= DEFAULI=-PRISE=y RS
/ KCOMPOUND=-PRESE =SB0 =
{DLFAULT-PRESEI~SUBLIST>
::= {FORMULAD

/ <REPEATED-PRESET-VALUES-OPTIOD

/ {DEFAULT-PRESET=-SUBLIST-HEAD> {FoRrsiLy

/ <DEFAULT-PRESET=-SUBLIST-HEAD> <NULL=-PRESLD

/ <DEFAULT-PRESET-SUBLIST~Huab>

C<REPEATED-PRESET-VALUES~OPT. D0
{DEFAULT=-PRESIET-SUBLIST=-HEADLD
.= (PRESET-VALUES-0OPTLOLD>
/ <DEFAULT-PRESET~SUBLIST-HEAD>
C{PRESET-VALUES=-0PTIOND

58

"4--“-....--lmE!-Fww-q-.---.-.E_-_Eﬂu-.-.u!-lnrg“‘

2™
[RS]
v

<COMPOUND=-PRESET-SUBLIS I

1= CCOMPOUND-PRESET-SUBLIST-HEAD> <FORMULA
226 / <COMPOUND-PRESET-SUBLISI-HEAD> <NULL- qukh.
227 / <COMPOUND-PRESET-SUBLIST-HEAD>
CREPEATED-PRESET-VALUES-QPTLOWNY

228 <COMPOUWD PRESET-SUBLIS LADY
:= <DEFAULT-PRESET- SUBL’\r HEAD>
CPRESET-INDEX~SPECIFILx»
229 / <PRESET-INDEX-SPECIFltr>
230 / <LU‘POUND PRESQY—S”B_IQT-HEADB
{PRESET CES-0PTIOND>
231 / <COWPOU U DRLth SUBLIST<~HEAL
CPRESET~INDEX=-SPECIFL S

232 {PKESET-INDEX=SPECIFLIERD> .= (PRESET-1ND0N-st0 00 7l
HEaD>)

233 <PRESET-INDEN-SPE LIPL: -HEADD
:= POu (<E)h

P

234 / <PREISED- YJ‘}-bPuxikle qi ,

235 KPRESET-VALUAS=-0PT. DL .=

230 Crone
237 <REPE = PR~ - -
QP70

238 KREPEATREN-PRESEI-VALES=-0P . v
cr= (REPe L [LON-LIST-HEADY (Fo-ilias)
239 JOKREPELLD TION-LIST=-HELDy (NULL=PRUGZEZT)
240 FCHEP S U TION-LIS T=HunD
CRPEATAD-PRISE [-‘s;QrS-DPf;JX')

2417 KKEPE DI TLOn-LI8 =384
LE Zy\..u\u‘l\ I_.I r-".‘i\‘:‘x' > <
240 SoREPATLTION-LIST-HuaD> (Privil- -

3 KBLOCK-Prisoly 1=

1o ro
~ &
L

]

.

U

t

<
-

(

s

'

t

14

*245 LTYPE-NAME> o= <ITEV-IYU¢—VA">
*244 ! rﬁBLF‘LXPL-\ >
*247 /o CRLAOCK TIHL—\x i

]

*248 <LTYPL-DEL) KITi=TYPE=DE
*249 S TABLZ=TYPL-DEC
*250 / <BLOWE=-TYPE=-DEUD

*¥251 KITEM-TYPE-DEC> = TYPe NAMED [e=TYPE-DESCRIPTI 0 -,

252 KTABLE-TYPE-DuC> = TYPS <hadiin> Jasiy (TARLE-TYPr-
SPEUL i

—————————

253 <TABLE-TYYE-SPECIFLERD ‘
1= CDIMENSION-LIST> <STRUCIURE-SPECIFLEK?

CLIKE-OPTION> <ENTRY-SPECLFlor>

C{DIMENSION-LIST> <STRUCTURZ-SPECIFlcEkD

CENTRY-SPECIFLERD

<DIMENSION~ ‘IST) CLIKE-QOPTIOND {EXNTRY-SPECLFL-

<DIMENSION-LIST> <ENTRY-SPLUILFLnpD

CDIMENSTON-LIST> <TARLE-TYPC-NANLE

258 <LIKE-OPTION> ::= LIKE <{TABLr-TYPL-NAMNID:
259 <BLOCK-TYPE-DECY> ::= TYPL AR 5L ool dok=3000 -

ro

w

wn
N e ~

PART>
260 <STMT=-NAME~DECY> = 8TMT-NAME=DS =M 20

261 CSTAT-NAME-DEC-HEADY ::= Labi. <Nai>
‘ 202 PRSI

263 <DEFINg-DEC> ::= DEFLln <NANLD
: 204 LDZF-PARTY = KFORMAL-DEFINoL~PArAlNTon-0I30 i~ 0~
| OPTILON> ldana T lThw=30nl 0

265 KFORILAL=-DEFLAE-PARANE L x~LI51

260 SO CFORMAL-DEFL Ne=PARA R D=L Isi=-un

257 KFORMAL-DEFINE-PARAMETHEK-LIS{=-Hu 0o
i c:= (<LTK>

268 /O KFORMAL-DEFINE-PARAMAETR-LI S T-Hu w0) (Ll
269 KLIS[=-0PI1UN>» =

279 /o LISTEXP

21 / LIsTLWW

22 / LISTROTY

273 <EXTERNAL-DEC> .= {DEF-sbui

274 / KREF-SPL.-

5 <DEF-sSPEC> ::= <SIMPLE-DLED>
6 / <COMPOUND-DE Y

277 <SIMPLE-DEF> ::= DEF {DZF-SPEC~CHOIC:E>

278 <COMPOUND-DEF> ::= DEF BEGIN DEF-SPEC-CHOLCE=-LIST> =i

<DEF-5SPEC-CHOICE-LISTI?
CUEF-SPEC-CHOLCE>
280 / <DEF-SPEC-CHOICE>

279 <DEF-SPEC-CHOLCE-LIST>

NULL-STHT>
<DATA-DEC
<DEF-BLOCK=-LWsTARTLATION,

281 <DEF-SPEC-CHOICE>

I
t
~ = N

60

B

298
299

300
301
302
303
304
305
306
307

*308
*309

*310
*311

*312
' *313

*314
*315

*316

— | _ -—

J LSTMI-NASAE-DECS @
/ <DIRECTIVE> <DEF-SPEC-CHuIC>

<DEF-BLOCK-INSTANTIATIOND> ::= BLOCK INsSTALCE <(NAVE>

<REF-SPEC> ::= (SIMPLE-REF>
!/ <COMPOQUHD-REF>

{SIMPLE-REF> ::= REF <KRzZF-SPLC-CHOLCL.
(COMPOUND-REF> ::= REF BHEGLN <REF=-SPEC-CHOICr-LISI> Zio

{REF-SPEC-CHOICE-LISTY> ::= <REI-SPEC-CHOLUR~-LINT)
<REF-SPLC-CHOLGCED
/ <REF=-SPuC~-CHOLCH
(REF-SPEC-CHOICE> ::= <HULL-STHI> !
/ <DATA-DEC> !
/ <SUB-DEC>
/ <DIRECTIVE> <(REF=SPEC~CH0l Lo

COVERLAY=DECY = OVEKLAY <ABSOLUTw-ADDRIs->
COVERLAY=-EXPRESSTOND>

CABSOLUTE=-ADDRESS> ;=
Jorar O KFuriiluas)

COVERLAY=-EXPR=ZSS1LOND
:= OVERLAY=-STRINGD
/ COVERLAY-EXPRISSTOND @ OVEXLAY-STxINu»

OVERLAY=-STRING>
;= COVERLAY-ELEMENDY
/ <OVERLAY-STxISNG> , <OVEKLAY-ELSHRIo

SPACERD

= ¥
[/ KNAMED
/ (COVERLAY=-EXPRESSLON,)

COVEKLAY-ELEMENTD

SSPACER> 1= W (FORNMULAD

{SUB=-DEC> ;:= <PROC-DECD
/ <FUNCTILOMN-DEC»

{SUB=-DEF-LIST> ::= {SUB-DEF>
/ <SUB=-DEF-LIST> <3.B-DEb>

{SUB-DEF> ::= <PROC-DEI>
/ <FUNCTLON=-DEF>
/ <DIRECTLIVE> <SUB-DEF>

<PROC=-DEC>

it

{PROC-HEADING> , <DEC> i

<PROC-DEF> {PROC-HEADING> ; <COXMPOUND-BODY>

1

61

*317 / <PROC-HEADLNG> ; <8T.i>

*¥318 <PROC-HEADING> ::= PROC <NAME> <{SUB-ATTRIBUTLE>
<FORMAL-PARAMETER-LIST>

*319 <(SUB-ATTRIBUTED> ::=

*320 / REC
*321 / RENT
%322 <FUNCTION-DEC> ::= <FUNCTION-HEADING> ; <DEC>) i

*323 <FUNCTILON-DEF> <FUNCTION-HEADING) ; <COMPOUND-BODY »
*324 / <FUNCTLON-HEADING> ; <ST-1>

#325 <FUNCTION-HEADING> ::= PROC <NAME> <SUB-ATTRIBUT
CFORMAL=-PARAMETHER=-LIST?
CITEM-TYPE-DESCRIPIIUND

*326 <FORMAL~PARAMETER-LIST>

327 / (@ <FORAAL-I0-PARAMETER=-LISI>)

328 / ({FORMAL-IO-PARAMETER-LIST>
CFORMAL-IO0-PARAMETERK-LIST>)

329 / (<FORMAL-IO-PARAMETEK-LIST>)

330 <FORMAL-IO-PARAMETER-LISTY
;1= <FORMAL-IO0-PARAMETER-LIST> |, JNAIUVD
331 / <NAMED

#*#332 <INLINE-DEC> ::= <INLINE-DEC-dtal>

*333 {INLINE~DEC-HEADD = INLINL <SUB=-nal0

*334 / <INLINE-DEC-Hoso» | SUB8=1000 0
*335 {SUB-NAMDD = (PROC-LABEL=NAMED

*330 / NAMED

*337 LSTMT-LIsST> = (STMT-LIST> (ST

*338 / KSTMI-LIST> SULL=STYT» <ST-i»

*339 /7 NULL=STHT> <8TH

*340 / <STHTY

*341 {STMT>
*342

CBALANCED-STMTY
CUNBALANCED=-STHMT>

~

*343 <BALANCED-STMT> ::= <{BALANCED)
*344 / <DIRECTLVED> <{BALANCHD-STIAI

*345 <UNBALANCED=STMT> ::= <{UNBALANCED?
*346 / <DLRECTLIVE> <{UNBALANCED=-ST:I»

*347 <UNBALANCED> ::= <LABEL> <UNBALANCED>

[*348 / <UNBALANCED=-I1F-5TMID
*¥349 / <UNBALANCED-FOR-STAI»
|
62

..

—

*350 / <UNBALANCED-WHILE-STI >

*#351 <BALANCED>

;= <LABEL> <BALALCEDD

*352 / <ASSIGNMENT-STHI> ;

*¥353 / <BALANCED=-FQOR-STMI>
%354 / <BALANCED-WHILE-STNT>

*355 / <BALANCED-IF-ST™MT>
*356 / <CASE-STMT>

*357 / <PROC-CALL-STMT> .
*358 / <RETURN-STMI> ; '
*359 / <GOTO-STHMT>

*360 / <EXIT-STMT)>

361 / <STOP-STMI> ;

362 / <ABORT-STHMI>

*363 / BEGLN {STHT-LIST> <DIRECT=-CUP I ad=0N00
*364 (NULL=STMID> ::=
*365 / BEGIN <COYMPOUND-END>

*366 <{COMPOUND-ENDY ::= SnD
*3067 / SLABELY> COMPO D=8

*368 <LABEL> ::= <PROC-LABEL-NAMLD
*369 <ASSIGNMENT-STMT> ::= TAxG=!1=LIST, = {ENPR_SS. oo

370 <TARGET-LIST> ::= <TARGEI-LIST> |, <TAry: o

*371 / <TARSEL,
*372 <TAKRGET> ::= {LHSD>
*373 / <PROC-LABEL-NAMLY
374 <BALANCHD=FQR=-3TvT» = CFUR=CLAUSE > 3alanit-D=x101
375 / CFUb~BY> <BALANCHDI=STio»
370 / KFUR=THEN» <3alaNUwn=STago
377 <UNBALANCED-FOR-STMI>
::= (FOR-CLAUSE> <UNBALARCHO=-STMI>
378 / <FOR-BY> <UNBALANCED=-STi»
379 / <FOR=-THEN> <UNBALANCED=STHI>
380 <FOR-CLAUSE> ::= KINITIALD> <SAF:>
381 / <INITLALY> <WHLLE=-PHRASE> {(SAFsL)

382 <FOR-BY>

::= SINITIALD> <BY-PHRASE> <SAFL)»
383 / <KINITILIAL> <BY-PHRASED> <WHILE=-PHKASKE> <SAFLY
384 / <INITLALY> <WHILE-PHRASE> <BY-PHRASE> <(SAFL>

385 <FOR-THEN>

::= CINITIAL> CTHEN-PHRASED <SAFLY
386 / <INITLAL> <THEN-PHRASE> <WHILE-PHRASE> <SaFi>
387 / <INITLIAL> <WHILE=-PHRASE> <THEN-PHRASE> <Sai.-

63

Ww;....IlIlIllllll----...-.....-.........-.-......‘!

388 <INITIAL> ::= FOR <NAME> : <EXPRESSLUND
389 / FOR <LTR> : <EXPREssIOn

390 <BY-PHRASE> ::= BY <EXPRESSION)>
391 <THEN-PHRASE> ::= THEN <EXPRESSION>

it

392 <WHILE-PHRASE> WHILE <BRANCH-FALSED

*¥393 <{BRANCH-FALSE> {BIT-FORMULAD

ff

*394 <BALANCED-WHILE-STITD> ::= {WHILE-CLAUSH>
<BALANCLD~STMT >

*#395 <UNBALANCED-WHILE-STMT> ::= (WHILE-CLAUSE>
CUNBALANCED-STM

%396 {WHILE-CLAUSE)> ::= WHILE <{BRANCH-FALSE> {3470

*397 <SAFE> =
398 /o ISAFL

*399 <BALANCEU-IF-STAID i3 (IF-PRIFIL> (siniineia-y i

*400 CUNBALANCED-LF-STAT> = <IF-CLAUSE> (ST
*401 [KIF=PREFLE> (Unanliliinn-nll

402 (IF=-PREFIX> ::= IF~CLAUSHY> <BALANCRED=-ST > o
*403 <KIF-CLAUSED> = TF <BRASUCH=FLLIE
*404 (CASE=-STHMID = <CASE-ROUYY> LCOMPICHD-EL,

*405 <CASE-BODY> ::= (CASE-CLAUSE> {UASE~CHO! Cov
*400 / KCARE-BODY» <CASu-CHO L C-»

*407 <CASE-CLAUSED CASE <EXPRESILOND

if

*408 <CASE~-CHOICE> ::= <CASE-ALT> @ <STH0»
409 [KCASE=-ALI> « <STAD> FALLTH

*510 <CASE-ALT> ::= (<CASE-INDEX-GROUPY)
*411 / (DEFAULYL)

*412 <CASE~INDEX-GROUP>
;= CCASE-INDEXD
*413 / <CASE-INDEX-GROUP> , <CASE-ISDED>

*414 <CASE-LNDEXD> ::= {EXPRESSIOND
*415 { <EXPRESSIOND> : <{EXPRUSSLON,

416 <PROC~CALL-STMT>

. := CINVOCATIOND> ABORT (PROC-LABEL-Nili>
*417 / <INVOCATIOR> ;

...---.--'-""""""-'-'---n-n--.-........ _ ¥

*418 {INVOCATION> ::= <OUTPUT-LIST>)
*419 / <INPUT=-LISI>)
*420 / <PROC-LABEL-NANMEY

*421 <INPUT-LIST> CCALL-PREFLX> LInPUT-Par>

*422 [<INPUT=-LIST> , KINPUI=PARD

*423 <OUTPUT-LIST> ::= <IWPUT-LIST> : OQUTPUI-PARD
*424 [CCALL-PREFIX> : <OQUTP.L-Pazril:
*425 / KOUTPUT-LIST> |, <QUTP.T-Pait:

*426 <CALL~PREFIX) ::= <PROC-LABEL-NAME> (
*427 KINPUT=-PARM> ::= <EXPRunsTOND

*428 <OUTPUT-PAR:D> ::= LYS»

%429 <RETURN=-STMT)> ::= RETUK:

#4530 <GOTV-STMT> COTU CPRUC=-LARIL-NA

li

*431 <EXIT-STMI» = Eull
432 <STOP-STMT> = STuP
433 / STuP (FuriJia,

434 <ABORT-STMI, ::= ABORI

%5435 C(FORMULAD ::= <FORMULAY 4 <Thwi-
*430 / <FORMULA> -~ <Thkr.l,
*437 [+ KTeryD

*438 [=~ <TExrMD

*439 / <TERY

*440 <{TER!MD = (TER™> # {FACToro
*44) J KTrr=> / <FACTOR>
*442 / KTERM> MO <{FAllorn,
*443 / <FACTOERD

*544 CFACTUR> = CFACTOR> *% (PRiManY >

*445 / <PRLIAARYD

*446 <PRIMARYD> = {INTEGER-LITEKALD

*447 / <REAL-LITERAL>

*448 /] {BIT=-LITEKAL>

*440 / {CHARACTER=LITHRALD

*450 / <BOOLEAN-LITEKAL?

*451 / <POLATER-LITEKALD>

*452 / <NAMED-VARIABLEY

*4573 / SLETTER>

*454 / <FUNCTLON-CAL.D
455 /] <INTEGER~MACHINE=-PAKAMET-R.
450 / <FLOATING-MACHLNE-PAKAME K.

65

i*—'-"-'!.IIIIl-H-"—-'-F-!-I——u------—--—-rwﬂl

457 / <FLXED-MACHLNE-PARAMETER)
*458 / (<EXPRESSION>)

459 / <CONVEKSION> (<EXPRESSIOu>)
*460 <BIT-FORMULAD> ::= <AND-FORMULAD

*461 / <OR-FORULA>
*462 / <XOR-FORMULA>
*463 / <EQV-FORMULA>

*464 / <BLT-PRIMARY> .
*465 / NOT <BIT-PRIMAKY>
*466 <BLT-PRIMARY> ::= (RELATIONAL~EXPRESSION>
*467 / <FOK.ULA>

*468 <AND-FORMULAY> ::= <BIT-PRIMARY> AND <BIT-PRIMARY> :
{AND~FORMULA> AND <{BIT-PRIL.IAKY> '

>
£
[on
\c
~

*#470 <OKR-FORMULA> ::= <BIT-PRIMARY> OR <{BI[-PRIMARY>
*471 / <OR-FOKMULA> OR <BIT=-PRI.-AxY>

*472 <XOR-FORMULAY> : CBIT-PRIAARY> ROR {HLT=-PRIMARY»
*473 / SXOR=FORMULAD XOr <B31TI=-PRIAIRYD

0

474 <EQV-FORMULA> : {BIT-PRIMARY> EQV <BLI~Pal.iiny . |
475 / <EQV=-FORMULA> EQV <nll-Prl Luiny

*476 <RELATIONAL-EXPRESSION>
::= CFORMULA> <RELATIORAL=OPURATOIRD (Fourli i

*477 <EXPRESSIUND ::= <BIT-FORWULA>

*478 <NAMED-VARIARLED = {SUBSCRLIPIY)

*479 / NAEY

4380 / <SUBSCRIPIV) <Polaine,
481 /o OANAED> KPolalurs

482 / KPOLNTLRD

*483 {LIr> LETT=K>
*,84%
*485
*430
*487
*488
*438Y
*490
*491
*492
*493
*494
*495
*496
*497

B N LN]
s <CHUXTTZ2LmMOaw N

495 <POLUTER> ::= {NAME)

499

*500
*501

*502
503

*504
505

506

507
508

*509
510

511
512
513
514
515
510
517
518
519
520
521

522
523
524

525

526

527

528

529

530

531
532

« <FORMULA>)

<SUBSCRIPT>

<PREFIX> <FORMULA>

/ <SUBSCRIPT> , <FORAULA>

KPREFIXD> ::= <{NAME> (
/ <POILUTER)> (

<LHS> ::= <NAMED-VARIABLE> :
/ <PSEUDO-VARIABLED>

<PSEUDO-VARTABLE>

:= BIT (<TARGET> , <FORMULA> , <FORMULA>)
/ BYTE (<TAKRGET> , <FORMULA> , <FORMULAY)

<FUNCTLON-CALL>

CINIRINSIC~FUNCTLON-CALLD

CLOC~-FUNCTILUNY
CNEXT=FUNCTLON,

<BIT=-FUNCTLONY

si= BIT (<EXPReSSIONY> , FORNULAD> , <FORMILAS)

<BYTE=-FUNCTLOND

si= BYTH (<FORMULA> , <FORICLA> , <FORMULA>)

<SHIFI~FUNCTLON>

::= CSHIFT=-DIRZCTIOND (<EXPRESSIONY> , <FOURMULA>)

{SHIFI-DIRECTLO®D

<ABS=-FUNCTLON
{SIGN=-FUNCTLOW,

{SIZE-FUNCTLOND

::= {INVOCATLIOND> 3

/ REP (<NAMED-VARIABLE>)

/ <INTRINSIC-FUNCTLON-CALL>

CLOC-FUNCTLORD
CNEXT=-FUNCTLON, N
CBLL=FUNCTLOND 1
CBYTeE-FUnCLlony

CSHIFT=-FdnelioanD

SABS-FUNCTLOID

CSIGH=FUNCTILOND

<SlZu=-Fonclions

<BOUNDS-FUNCILOD

SNWDSEN=-FUNCILON
KSTATUS-INVEKSE=FULCTTOw. i

I e N SN /]

LOC (<NAAED=-VARIABLE>)

po= NEXD (KFORMULA> , <FURMULAY)

::= SHIFIL
/ SHIFLK

ABS (<FORMULA>)

SGN (<FOR:MULA>)

{S1ZE=-TYPE,> (<FORMULA>)
{SI1ZE-TYPE> (<TYPZ-NAME>)

~

67

, |

533 <SLuE-TYPE> ::= BITSIi:c j
534 / BYTESIZE ;
535 / WORDSIZE

536 <BOUNDS~FUNCTION>
::= CWHICH-BOUND> (<NAME> , <FORMULAD>) i

537 <WHICH=-BOUND> ::= LBOUND

538 / UBOUND -
539 <NWDSEN~FUNCTLOND> ::= NWDSEXN (<NANE>)

540 / NWDSEN (<TABLE-TYPE=-NANZ>)

541 <STATUS~INVEKSE-FUNCTIORD>
::= FIRST (<STATUS-INVERSE=-ARGUMEND>)

542 / LAST (<STATUS-INVERSE-ARGUMZNTY>) i
543 <STATUS-INVEKSE-ARGUMENT> ::= <FORICLA> ‘
544 / <IIEM-TYPE=-NA 0 i
545 CCONVEKSION) ::= (¥ <ITEM=TYPE-DESCRIPIL NN =)
546 / <TYPe-NAMD
547 / REP
548 / b
549 / C
550 / F
551 / P
552 /S
553 /U
554 <NAME-LIST> ::= <NaMZD>
555 / NAME-LIST> , <NAM
556 <RESERVED-WORD> ::= ABOKI
557 / ABRS
558 / ARD
559 / BEGLY
560 / BLT
561 / BITSIZE
562 / BLOCK
563 / BY
564 / BYTE
565 / BYTESILZE
566 / CASE
567 / COMPOOL
568 / CONSTANT
569 / DEF
570 / DEFAULT
v 571 / DEFINE
. 572 / ELSE
F 573 / END
| 574 / EQV
575 / FALLTHKU
, 576 / FALSE
h

577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595

597
598
599
600
601
60?2
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619

*620
*621
*622
*623
*624
*¥625

626 <BIT-LITEKAL>

\\\

{RELATIONAL-OPERATOR>

FIRST
FOR
GOTO
1F
INLINE
INSTANCE
ITEM
LABEL
LAST
LBOUND
LIKE
LOC
MGD
NEXT
NOT
NULL
NWDSEN
OR
OVEKLAY
PARALLEL
POS
PROC
PROGRAL
R=ZC
REF
RENT
REP
RETURN
SGN
SHIFIL
SHIFIK
START
STATILC
STATUS
STOP
TABLE
TER:!
TH
TrRUL
UBOUIN.
WHILE
WORDSZ
XOR

L
VANVAAN
<

s:= CINTEGER-LITERAL> B

CCHARACTER-LITERAL>

64

*627
*628

*629

630

646

650

651
652
653
654
655
656
657
658
659
660
661
662
663
664

665
666

<{BOOLEAN-LITERAL>

g
TKULE

FALSE

It

~

{POINTER-LITERAL> NULL

<DIRECTIVE> <COMPOOL-DIRECTLVE>

<COPY=-DIRECTIVE>

{SKIP-DIRECTIVED

<BEGIN=-DIRECTIVE> :
<END-DIRECTIVE>

CLINKAGE-DIRECTIVED>

{TRACE=DIRECTIVE>

CINTERFERENCE-DIRECTIVLEY

<REDUCIBLE-DIRECTIVED

{NULIST-DIRECTIVt> .
<LIST-DIRECTIVE> !
CEJECT-DIRECTILVE>
<BASE-DIRECTLVE> 3
<ISBASE-DIRECTIVz>

<DROP-DIRECTLVE>

CLEFTRIGHT-DIRECTIVLY {
CREARRANGE-DIRECTLVRY

KINITLALIZE-DIRECTIVEY

ORDER=-DIRECTIV=D>

B e e N []

<COMPOOL-DIRECTLIVE>
::= [COMPOOL <COMPOOL-DIRECT Ve-LIS1> |

<COMPOOL-DIRECTIVE-LIST>

/ KCOMPOOL-FILE=NAMDY <COMPOOL=-DaULama=niii-l e
/ <COMPOOL=-DECLARED=NAIE-LISI

/)

/ (<COMPOOL~FILE-HAND>)

<COMPOOL-DECLARED-NAME-LIS >
::= {COMPOOL-DECLARED=-UAHED
/ <COMPOOL-DECLARED=-NAME-LISI>
{COMPOOL-DECLAKED=NAED

{COMPOOL-DECLARED-NAMED CNAMED

KTYPE=NAMEY
{PKOC-LABEL=HA L.

(<TYPE-N4AlE0)

(<PROC-LABEL=-Ntn)
(<NAED>)

<COMPOOL=-FILE=NAME> ::= (CHARACIRK-LITEKALD

{COPY-DIRECTIVE>

ICOPY <{CHARAUTER-LITRKALD

»

{SK1P-DIRECTLIVE>

ISKLP

1SKIp (LT

~

667
668

669
670
671
672
673

‘-—“_y-‘

{BEGIN-DIRECTLIVE> ::= !BEGLN ;
/ VBEGIN <LTKR>

{END-DIRECTIVE> ::= lEND ;

CLINKAGE-DIRECTIVE)> ::= ILINKAGE <{SYMBOL-LIST> ;
{TRACE-DIRECTIVE>
::= ITRACE (<FORMULA>) <NAME-LIST> ; *
/ 1TRACE <NAME-LIST>

{INTERFERENCE-DIRECTIVE>
::= |INTERFERENCE <INTERFEKERCE-CONTROLY

PORT T S

{INTERFERENCE-CONTROL> %
::= (NAME> : <NAME> 2

/ KINTERFERENCE-CONTROL> , <NaM:E»
CREDUCIBLE-DIRECTIVEY ::= IREDUCLBL:Y

CNOLIST-DIRECTIVE> ::= [NULIST

»

{LIST-DIRECTIVED>

W

1LIST T
CEJECT-DIRECTIVE> ::= TEJECI ;

b

C{BASE-DIRECTIVE>

1

PBASE (NAMEY (INTRGER-LITERALD

CISBASE=-DIRECTIVE, ::= IISBASE NANEDJIINTEGER-LITERAL?

<DROP-DIRECTIVED> 'DROP INTEGER-LITZrALD

"

CLEFTRIGHT=-DIRECIIVEY = [LEFTRLIGHT

CREARRANGE-DIRKECTIVED PREARKANGE

CINITLALIZE-DIRECTIVED> ::= 1TINITLALTIE

CORDER=-DIRECTIVE> - := lORDYr ;

71

o *"----.-III!lIIll-lM!-lI.--.-.-.-!!!!,..--.B.-E:M““

Appendix .

System Maintenance Guide

This appendix describes the structure and organizati.

of JATS. The purpose of this appendix 1is to provide 1
necessary information to the maintenance progranmer to all
%. modification of the systenm. The overall systen will no

briefly described followed by a system stracture chart, o ;

32 +.

description of each subroutine, and a list of svsten errov

statements.

JATS uses the LR parser generator svsiel $H COasirac!
parse tree of the input J73 source program,. Tnls parse v

is then traunslated so that it represents an eguivalent Al
source program, Finally, the cterminal nodes are oulp:
using a prettyprint format. The structure of JATS can
therefore be grouped into three funcrtional moduies:
(1) parser module, (2) transliasion madale, o
(3) prettyprint module,

The parser module was designed tros the LR parsor

generator system and the parsing algovithms aeve Lanc

A

directly from LR. Appendix A contains a brief description

of LR and the data structures that support the parsiog

algorithms, There 1s one moditication to the parsiag

routines to accommodate the J73 grammar. During the parsin,

.

loo a check 1is made 1in certain states of the parser to sc-
P> I

a flag which indicates whether the parser 1s processig

w

executable scatements or declarations. ‘trnis flag Is csco
within the scanner to return the correct token Jdarin
! scanning of <name>s., The major additions to the parser .ro
the scanner and the semantic processor. The scanner rel.ar .-
the tokens of the input stream to the parser. 1t consist-
of a number of subroutines which will be discussel! 1azer,
The semantic processor constructs the parse tree duria, .o
reductivn processes. The subroutines that suapport L.v
semantic processor will be discussed later. One ozher are.
| of interest 1is the use of a "heap' for dyvnani: «llocarion

the nodes and elements 0f the =ree.

The ctranslation module processes the pilse tree us!

the language production numbers Lhdas WJere Jdsct L) Sulsirids

each Interadl node. worsh o aocing

oodurine the translaud

process 1s the recl

2

mation and reallocazion of fieap space.

A list of availaple hedap space 1s maintained by linain o

spaces together, wodes of the tree thal dare Jeloeted o
alsy made available for reallocation thya-h o Tiedd

of aviailable nodes using an overlavyel data sirac. o,

The prettyprint module simply oulpiats Che leaves
terminal nodes, of the parse tree and uses the syubols L

control the formatting of the resulting Ada progra.

A systen structure chart is spread across figures 1.,

el

13, and 14, A brief description of each subroutine follow
the system structure charts, Alsy incladed in T

appendix, is table IV which descrives the poesinle syste

~J
o

errors and the changes required to

74

A0 AMAN

O TINVIIS

L1O0AHd,0d HOUARH

S E S LG RRIR Y P T L O N A
JUON LN T d AV AS LN 1
AT INTHA SOMTUWIS LN THd 9]
INTHd , ALLHMd Y UVHH _:m_:_ LA, O

vav, INIAd

AT NVHL

NVAL ,ONTH

L20adY (N 14 TVIINI

S i e idaiy s ‘Hg<‘

75

EPER VSRR ST S SN A T N R

Qe s

HrAd HAON AONVHD HAOM,0av

qaor s

SHUGON dVMS HId, 4AOKW

3.

70

LVTISNVAEL

I

M.

WOD

o, i oy - 1 o
WY ACTON A
TVA HVHD A‘,luv A
(1 11070 AV a
WAV, 414004 MAAWAN HATIOHE 1A MAONSHAE | HINVN

DNTHIS

,dVHD

Nv3S

w4-u-NlllllIlll!lI------..-.-........-..-..-..--.FH!

ADD'NODE. Local to procedure TRANSLATE. Used duri.

the translation process to create a new teraninal node
consisting of the terminal symbol TERM'CODE, it adds the nco:
element to the current node., The new elewent 1s inserted

immediately after the element pointed to by PTR. Updatos

the global variable NEXT'NODE.

CHANGE 'NODE. Local to procedure TRANSLATL. Cnan_ -

—_——l o

the terminal symbol at the node identified by the cleiew

pointed to by PTK to TER:M'CODE,

CHAR'STRING. Local to procedure 5CAN. Used Lo S0
{character-literal>s during the parsing process. Conglroo -
a new element of the ternin:l node o Idencit: L
{character-literal>, Updates the slobal VAt LA o
NEXT'STRING and STRING(REXT'SIKING). Retirns he %onc.

number of <character-literal> in SCAL'TUK.

CHAR'VAL. Locazl to procedar. WNMBLL,., Function un

during the process of scanning nunbers o retar: the Val .

o

of the digit CH.

COMMENT. Local to procedure SCAN., Used to scaa

comment,

DEC'HEAD. Global boolean function. Used during the

arsiag rocess. Returns the value TRUE 1f the token,
P 5 P

IN'TOKEN, is the start of a declaration., If IN'TOKEN 1is 4

<name> then the zlobal CUKR'IOKE: is changed to

{proc-label-name>,

78

’—'—m‘

DELETE'NODE. Local to procedurc TRrRANSLALNL. Uso s

during translation to delete the node element immediatels
following the element identified by PIr and calls

DELETE'SUBTKEE with the node number at the deleted elemnc . .

Updates the pglobal variable FKEE'PTk. N

DELETE'SUBTREE. Local to procedure DULETE 'Suun. [l

is a recursive procedure that deletes all nodes and elenct

from the parse tree as a vresult of deletin; the node
NODE ' NUMBEK. Updates the global variables WLXi'sols anld

FREE'PTK.

DIGI:Y. Local to procedure SCAN. Boolean Lo
which returus the value TRUE 1f CH is a Jdigi-.
DIRECTIVE., Local to procedure SCal. Uscd Lo oso

directives, Returns the proper token nuatber in SCLN [ar,

DO'KREDUCT. Glopal procedure., Used daring the parsio;

process to perfory « reductioa based o Lhn a1
production PROD'NUM. Calls SEMANIIC and pashes Lo e
information ontuv the parsiia, stacsks. Updates the slobag!

variables STACK'PIk and CUR'STAT:,

DO'TRAN. Global procedure, Used during the puvsing
process to perforn a transition to REW'STATZ. Stacks e
current inforaation onto the parsin, stacxks and cails SCAR

for a new CUR'TOKEN., Updates the global variables CUR'SIAl.

and CUK'TOKEN.

79

DOUBLE 'MARK. Local to procedure SCAUN. Checss 1t t .

current token being scanned mightr be a double characies
symbol, such as <, Returns the correct token nunber ;.

SCAN'TOK for either case.

ERROR. Glotal procedure. Used durin_ the parsi-.

i .

process to output information regarding che curreil sLdal -

of the parser when a syntax error has been Jetected. Soco-

o alPS AN Y
Tl o wanicn halos

the pglobal wvariable ERR'FLAG to the value

the parser and translator systen,

FIND'REDUCT. Global procedarc. Function used dari . :

the parsing process to find the proper redaction o perior.

based upon CSTATE and CTUKEL.

FINDTOK. Local to procedure SCAal. Used dariag noa ‘

scanning of terminal symbols., Uscs TORK'SYMs0L an! LEGT ;

match the curreant symabol with the terainal svlbols Hf 37
it a matceh is found the wvalae of tac 2owen natber L

retirned as RET'VALUE.

FIND'TKRAN. Global procedurc. Fanction used durias tic

parsing process to find the proper transition based u .,

CSTATE and CTOUKEN.

.

ET'CHAR. Local to procedure SCAN. KkKetaras the neat

-~

character of the 1input stream as CH, and echochecks U1

input line images. Sets EOF'FLAG an.d clears NEXT'CHak,

INITAL. Global procedure. 1Initializes various :1obh.!

30

variables and data structures,

LOOKUP. Global procedure. Uses the global variablec
SYMBOL to find the symbol table entry for tihe <name> that i
contained in SYMBOL with a length of SYM'LENGTH, a glob.!
variable, If an entry is found, ENTRY'PIK contains the
pointer value of the entry and FOURD is TxUr. [t an eatr.
is not found, the symbol is entered in tne symbol table anl
ENTRY'PTR contains the pointer value of the new entry anld

FOUHD 1is FALSE. If a new entry is made e jlobal variaoni.

NEXT'SYMBOL is updated.

MARK. Local to procedure SCal. Byolean fuaction o

)

determine 1if the current character 0f tihe inpa. stret i-

[

mark, or seperator. Returns TRUr 1is the charscter

marx .,

MOVE'PIK. Local to procedure Twanslala, Uscd Jdurio

=
i

=

translation to move tae element pointer of 4 node, Pin,

nunber of posizions specified by COUL
p 1 y

»
.

NAME ' RESWORD. Local toy procedare SCAlN. Used Lo scin

,,_,
5
.
Z
[

<name>s and reserved words, Once the symbo
scanned, 1if FINDTOK returns a value 0 then i: is a {avnen,
Builds the global variable SYMBOL and SYM4'LeENGIdA. Kostar s
the correct token number as SCAN'TOK. May resct the globual

variable STMT'SCAN'FLAG.

NEWP. Global procedure. Funczion which returns

next available heap space pointer address for a dy

81

structure of the pgiven SIZE. Updates the global variani.

FREE'PTR or NEXT'HEAP as necessary.

NUMBER. Local to procedure SCAN. Used to scan numbers
and rerturns the proper token number as SCAN'TUK and

constructs a node that contains the value of the appropriare

literal.

PRETTY'PRINT. Local to procedure PRLNT'ADA. Used v

output the terminal symbol contained in the terminal node

: PRINT'NODE.

PRINT'ADA. Global procedure, Recursive procedar.
which traverses the suabtrees of NODE'HUMsi< and calls
PRETTY'PRINT when a terminal node is reached., Alsy outp

warnings that certain sections of code have not beenr fally
translated, Sets and resets the slobal varias

[

LAST'TKAN' FLAG .

PKINI'NODE. Glowval procedure. Utility procedure i

outputs the contents of the node NODE'JUrMniis,

O et

PRINT'SIRINGS. Glooal procedurc. Utility proceduar

that outputs tne <character-literai>s tha:! hive been parsed.

PRINT'SYH'TAB., Global procedure, Criitty procedare

that outpats the contents of the symbol tanic,

PRINT'TREE. Global procedure, Kecursive procedaro
that traverses the parse tree and calls PRINTI'NODE to out)t

the entire parse tree.

”~"".“'..-llll-""----II----------..-.zﬁ—“'

(%
¢

SCAN. Glopbal procedure. Scans the input and r.
the token numbers as SCAN'TUK. Creates a new terainal ol
each time it 1is <called and updates the global varia-..

NEXT'NODE.

SEMANTIC. Global procedure. Used during the parsi.

,

process to construct a4 new node Dbasel on the laagu: »

productien PROD'NUM. Also enters the SYM'CLASS values L1

the symbol table and wupdates the global wvariables RO, i

NEXT'NODE, and NEW'TREE'PTR. i
SWAP'NODES . Local to procedure TrRARSLATSZ, Used dorin

-

the translation process to swvap the two node clemeals
immediately follow the element pointer Lo by Pis. Pl 1=
moved to point tov the new elemest That follows e el o

that was initially pointed to by PTx.

TRANSLATE. Local to procedure TrAN'TxE:D. Contr.is ¢
translation process at each node TRATWILL. Sets

TRAN'FLAG for each acde that is transiated, Muy cres. T

nudes and elements.,

TrAW'TKEE. Glonal procedure. Recursive procedave g

to traverse the parse tree during translation,

P e

83

,= Table 1V
System Errors
Error
Number Cause/Required Changes .
Fl
1 Parsing stack overflow .
Increase the value of MAX{'STACK -
2 SYM'STORE'TAB overflow
Increase the value of MAX'SYA'STURL ;
3 HEAP overflow i
Increase the value of MAX'HEAP 1
4 TKEL overflow ‘
Ay 5 e 1
Increase the valuae of MAaxX'NODEX
5 STRING overflow
Increasce the valae of MAX'STxlaus
6 CSTRIAG'STunt overlilow

A

Increase the valae of "ANTSTIRIANG S 1o

f
§
)
% Appendix D
k;
| JATS User Guide
. The purpose of this appendix 1is to provide so-
i guidance for JATS users., The system itself is very easy - E
use; however, there are several limitations ha® The usor]
must adhere to for JATS to work properly. As shown in taol 1
i
I, there are several elements of J73 that have "odizied)
definitions.
One other areda that the user must prepare fov
translation 1is the identifiers or <nameds of the U7 %
H
program, As JATS is currently implemented, {namo™s (hiat ave 1
to be translated must not be Ada reserveld woris. Thne otngr
limitation with respect to <{name>s 1s the use ol Uhie sing.
quote within the identifiers. The use ot the single guo
must conform to the rales of the use of the underscore |
Ada. Tnis requires that the single quote De prececded !
tollowed by eltner a digit or letter and the singlt
cannot end the <namer. Also, the use of the dooor sio
not allowed since it does not trainsiate to any ejgiivul
element of ada. These limitations can be remnoved when Ju.-
is modified to become an interactive systen to allow U
user to rename an identifier when necessary.
A

With these limitations taken care of, the J73 pro;r:
can be translated with JATsS. On the AFWAL/AA DecSyvstern-11,

JATS can be run with the following command:

; LRUN JATS[3600,11%]
*{file named>.<extension>

JATS will respond with an asteris< as a4 proipt for the
name at which time the user should respond wisn a valid ...

with an extension of J73%.

M

JATS will create two outpur files: (1) Jals. iyl and

(2) <tile name>.,ADA. JATS.LST will contain o lis~i o1 .

input program and any information messdzes LD aor
generated, The second file is the transiated version of Lo
program and will have the sane 1ile name wizh o ¢alen
of ADA. This file will contuin wivrain, messages Lieniroin
sections of code that weve noU transtated. Taess Soo

s

will be bracketed by the following Tes-ao .

e o

“““““““““““““““““““ " I{:\A N R i i
-~ THE CODE BETWEERN THls BxAlKol Aanh 7« -~
-~ SBRACKET 4AY NOL B Yol --

-- THE CODE BETWEEN THIS BRACKED AND Tdh Pr_0 20 --
-~ BRACKET MAY NOT BE FULLY TxARsLAT-D -

JATS has been designed to process large progrars
does have some limitations o1 size. 1Y a Message consisl i

of a JATs system errov appenrs at the ter a0 white TAI0 1-

i

Pacs il oave Ao~

T —— e

running,

then one

and JATS will nave

accurs,

An

notify the

example

of the size linitations

has

been

to be modified and recompiled.

maintenance programmer,

J73 program and is translat

included in Appendix E.

CRICU Ly

1t Lo s

ed version or

AD=A100 881 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOO==ETC F/6 9/2

JOVIAL (J73) TO ADA TRANSLATOR SYSTEM.(U)
DEC 80 R L BROZOVIC
UNCLASSIFIED AFIT/6CS/EE/80D-5

2o 2 END

R Anto
8,
[|

NL

Appendix E

Example Programs

J73 Version

START PROGRAM TSTPGM;
BEGIN
ITEM TEST'NAME C 3;
ITEM TEST'FLAG B 1;
ITEM TEST'CHAR C;
ITEM TEST'NUMBER U 3;
ITEM TEST'NUM S;

HERE:
TEST'NUMBER = 3;
CASE TEST'NUMBEK;
BEGIN
(DEFAULT) : TEST'FLAG
(1) -~ 1 TEST'FLAG
(2:3,5) : TEST' FLAG
END
WHILE TEST'NUMBEK = 3;
TESTPROC; ;
IF TEST'NUMBER = 5;
GOTO HERE;

PROC TESTPROC;
IF TEST'FLAG;

BEGIN
TEST'NAME = 'ABC';
TEST'NUMBER = 5;
END
END
TERM

[/

FALSE;
TRUE;
TRUE ;

88

Ada Version

PROCEDURE TSTPGM 1S
TEST NAME : STRING (1 .. 3) ;
TEST_FLAG :

-- THE CODE BETWEEN THIS BRACKET AND THE FOLLOWING

-- BRACKET MAY NOT BE FULLY TRANSLATRD

-- THE CODE BETWEEN THIS BRACKET AND THE PREVIOUS

-~ BRACKET MAY NOT BE FULLY TRANSLATED

TEST_CHAR : STRING (1 .. 1) ;

TEST_NUMBER : INTEGER RANGE 0 .. 2 *% (3) - 1
TEST_NUM : INTEGER ;

PROCEDURE TESTPKOC 1S

BEGIN
IF TEST FLAG THEN
TEST_NAME := "ABC" ;
TEST_NUMBER := 5 ;
END LF
END ;
BEGIN

<< HERE >> TEST_NUMBER := 3 ;
CASE TEST NUMBER IS
WHEN OTHERS => TEST_FLAG := FALSE ;
WHEN 1 => TEST_FLAG := TRUE ;
WHEN 2 .. 3 5 => TEST_FLAG := TRUE ;
END CASE ;
WHILE TEST_NUMBER = 3 LOOP
TESTPROC ;
END LOOP ;
NULL ;
IF TEST_NUMBER = 5 THEN
GOTO HERE ;
END IF ;
END ;

89

- -

Vita

Richard L. Brozovic was born into an Air Force family
on 26 September 1953 in Anchorage, Alaska. Re graduatel
from Thomas Jefferson High School of San Antonio, Texas in
May 1972 and received a Bachelor of Science Degrec in
Computer Science from the United States Air Force Acadewny ut
Colorado Springs, Colorado on 2 June 1976. He was then
assigned as the Data Automation Chief at Laughlin AF,
Texas. In June 1979 he entered the School of Engineerin_,
Air Force Institute of Technology to pursue a gradus.e

degree in computer systems.

Permanent address: 3903 Maxine Drive
San Antonio, Texas
7822

90

UNSLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dlu‘EnlaredL
REPORT DOCUMENTATION PAGE BEFORE COMPLETING 11 1h

. REPORT NUMBER 2. GOVT ACCESSION NO.| 3 RECIPIENT'S CATALOG NUMBL R

AFI1T/GCS/EE/80D-5 N_A4 /005 $£&/
4. TITLE (and Subtitle) © T |'s. YYPE OF REPORT & PERIOD COVERED

JDVIAL(J73) T2 ADA TRANSLATIOR SYSTEN MS THESIS

6 PERFORMING OG. REPORT NUMBER

7. AUTHOR(s) B CONTRACTY OR GRANT NUMBER s

Richard L. 3rozovic

Capt USAF
9. PERFORMING OCRGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECZ™ TASK

AREA & WORK UN!IT NUMBERS

Air Force Institute of Technology (AFIT/EM)
Wright-Patterson AF2, 21 15333

11. CONTROLLING OFFICE NAME AND ADDRESS 12 REPORT DATE
Avionics Laboratory (AFJAL/AAAF-2) Decemher 1170
dright-Patterson AFS, 21 345333 13 NUMBER OF PAGES

1

14, MONITORING AGENCY NAME & ADDRESS(/f dilferent from Controliing Office) 15 SECURITY CLASS. ‘of this rep. =’

TSa DECL ASSIFICATION DOWNGRADIN -
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report,

Approved for public release; distribution unlinited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

(\

A pra pu’11c ral y IV AR 17017
ﬂ‘.dc LyncH “aj '3*..'-'\ 16 JUN 291

Jirector of Information

19. KEY WORDS (Continue on reverse gide if necessary and identify by block number)

Language Translation
Grammars

Computer Programs
Projramming Languages

20. ABSTRACT (Continue on reverse gide if necessary and identify by block number)

In recent years the Air Force has Jdeveloped a stanard programning lanjuine
J73, for use in embedded computer systems. How that the Air Forcoe has a
considerable investment in systems that arc currently being develope! with J70
the Department of Defense has sclected a high order programming lanjuazz, 1
that will becone the standard for projramming emnbedded computer systz*s
throughout the D2partment of Defense. 11so undar davelonmant s the dafinition
of a support environment for Ada. Jne of the tools of this sunnort nnv1ron~nnt

FORM
oD 1JAN T3 1473 EDITION OF 1 NOV 8515 OBSOLETE PIRLA351TI0N

("

SECURITY CLASSIFICATION OF TrIS PAGE ’When Data Entere:

e —

I !

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

2J. Abstract{continued)

should be a translator that will produce Ada source programs from J72 scurcze
projrams.

The subject of this research project was the design and development of a *
translativn system. The resulting systen accents J73 programs and produces
equivalent Ada programs to the extent possible while identifying segments of
J73 code that were not translated. This proj2ct made use of language parsing
techniques and various data structures to support th2 translation process.
Several problem areas are identified with nossible solutions. The translator
system should be a useful tool in the transition from J73 to Ada.

UNCLASSIFICD

SECURITY CLASSIFICATION OF Yu't PAGE/When Date Enteced”

